Abstract:
PURPOSE: A density control method of a nanostructure using polymer nanoparticles is provided to control the density of a ZnO nano-structure by mixing polymer particles in a precursor solution during the formation of a seed layer. CONSTITUTION: A density control method of a nanostructure using polymer nanoparticles comprises the following steps: mixing polymer particles with zinc precursor solution; spreading and stabilizing the zinc precursor solution which includes polymer particles on top of a substrate; forming a seed layer by removing polymer particles by heat treating the substrate; and growing a nano-wire structure on the seed layer. The polymer particle is a hydrophilic polymer. The density control method of the nanostructure additionally includes a step of surface-treating before adding the polymer particles into the zinc precursor solution.
Abstract:
PURPOSE: A droplet discharging head and a method for manufacturing the same are provided to prevent the destruction of a nozzle due to cleaning cotton flannel in a cleaning process. CONSTITUTION: A droplet discharging head(2) includes a solution containing part(24), a nozzle(22), a nozzle plate(21), and an insulator(23). The solution containing part contains a solution. The nozzle includes an outlet(22a) which is in connection with the solution containing part and discharges droplet. The nozzle plate includes a concave part(21a) surrounding the nozzle. The insulator is filled to embed the concave part and to standardize the tip cross section of the nozzle. A plurality of nozzles is prepared and is arranged in a serial form or a matrix form.
Abstract:
PURPOSE: A ZnO(Zinc-Oxide) nano wire and a method for controlling characteristics of the ZnO nano wire using plasma surface treatment are provided to achieve cost effectiveness by removing expensive additional processes by applying the plasma surface treating process of a catalyst layer. CONSTITUTION: A method for controlling characteristics of the ZnO nano wire using plasma surface treatment is as follows. A substrate(11) is prepared. A ZnO catalyst layer(13) is formed on the substrate. The ZnO catalyst layer is treated by plasma surface treatment. The ZnO nano wire(15) grows up based on the ZnO catalyst layer, which has been plasma surface-treated.
Abstract:
본 발명은 FED 소자의 전계 방출용 탄소나노튜브 제조를 위해 금속 나노 입자를 기판 상에 적층한 후 열처리하여 나노입자 사이에 공극을 형성한 후 그 상부에 탄소나노튜브 잉크젯팅을 하여 탄소나노튜브의 일단이 공극사이에 물리적으로 끼게(anchoring)한 후 후열처리하여 금속나노입자들이 서로 연결되면서 탄소나노튜브들의 일단을 잡아주어 탄소나노튜브의 접착력을 향상시키고, 전계 방출 능력이 개선된 구조를 얻을 수 있도록 하는 금속 나노 입자를 이용한 전계 방출 소자 및 그 제조 방법에 관한 것이다. 본 발명에 따르는 금속 나노 입자를 이용한 전계 방출 소자는, 수계 잉크를 제공하는 단계; 기판상에 상기 수계 잉크로 패턴을 인쇄하는 단계; 인쇄된 상기 패턴을 열처리 및 경화하여 공극을 형성시키는 단계; 공극이 형성된 상기 패턴 상에 탄소나노튜브 조성물을 인쇄하는 단계; 탄소나노튜브 조성물이 인쇄된 상기 기판을 후열처리하는 단계; 후열처리된 상기 기판을 활성화하는 단계에 의해 구성되는 것을 특징으로 한다. 수계 잉크, 탄소 나노 튜브, 전계 방출 소자, 금속 나노 입자
Abstract:
본 발명은 전자빔 증착법을 이용하여 게이트 전극 상부에 텅스텐 소재의 탐침이 형성된 원자간력 캔틸레버를 제공함에 그 목적이 있다. 본 발명의 원자간력 캔틸레버는 SOI 기판상에 소스, 드레인 및 게이트로 형성된 MOSFET 구조물에 있어서, 상기 게이트 상부에 형성된 텅스텐 탐침; 및 상기 탐침을 제외한 MOSFET 전면에 형성된 패시배이션층을 포함한다. 본 발명의 원자간력 캔틸레버의 제조방법은 SOI 기판을 이용하여 MOSFET을 형성하는 단계; 상기 MOSFET 전면에 패시배이션층을 형성한 후 패터닝하여 게이트를 노출시키는 단계; 상기 SOI 기판의 하부 실리콘과 절연막을 식각하는 단계; 및 상기 게이트 상에 텅스텐 탐침을 형성하는 단계를 포함한다. MOSFET, 캔틸레버, SOI, 텅스텐, 탐침
Abstract:
A method of manufacturing cold cathode using the jet printing method is provided to strongly adhere the carbon nanotube to a substrate by the thermal budget by using a bonding layer. The carbon nanotube solution is prepared. The carbon nanotube solution is jet-printed on the substrate. In a stand-by process, surfactant and carbon nanotube are mixed with water. The carbon nanotube is dispersed by ultrasonic wave. The organic solvent is the mixture of the isopropanol and water. And the water is a rate of 10~90 wt.%. After the dispersion step, the biocide and the additive including moisturizing agent are added in the mixture.
Abstract:
An atomic force cantilever and a method of manufacturing the cantilever are provided to form a passivation layer and then form a tungsten probe so as to maintain high sensitivity of the cantilever. A method of manufacturing an atomic force cantilever includes a step of forming a MOSFET(Metal Oxide Semiconductor Field Effect Transistor) using an SOI(Silicon On Insulator), a step of forming a passivation layer on the overall surface of the MOSFET and patterning the passivation layer to expose a gate of the MOSFET, a step of etching a lower silicon layer and an insulating layer of the SOI substrate, and a step of forming a tungsten probe(180) on the gate.
Abstract:
A micro pattern transfer apparatus capable of varying a line width is provided to control a contact area between a substrate and a probe by using elasticity of a probe support unit and a connection unit of the probe, thereby forming a micro pattern on the substrate as controlling the line width. A first ink keeping unit(320) contains ink. A probe unit(310) includes a hole and a probe. The hole transfers ink, applied from the first ink keeping unit, onto a substrate(350). The probe is for opening/closing the hole. A probe support unit fixes the probe unit to a lower part of the first ink keeping unit. An optical unit(330) includes a CCD(Charge Coupled Device) camera for confirming a location and processing state of the probe unit.
Abstract:
A read/write enabled atomic force microscopy cantilever is provided to improve the sensitivity by embedding a MOSFET(Metal Oxide Semiconductor Field Effect Transistor) in the atomic force microscopy cantilever. An atomic force microscopy cantilever includes a cantilever support, a cantilever arm, a probe(150), a metal layer(160), a channel(170), a source(180), a drain(190), and a gate(200). A first silicon layer, an oxide layer, and a second silicon layer are sequentially stacked in the cantilever support. The cantilever arm is formed by extending the second silicon layer of the cantilever support. The probe is formed in the second silicon layer of the cantilever arm. The metal layer is formed in the cantilever support. The channel is formed at a lower portion of the probe. Impurities are doped in the source and the drain. The gate is formed between the source and the drain.