Abstract:
본 발명의 일 실시예에 따르면 광이 신체 조직에 조사되었을 때 발생되는 발생 광을 수집하여 질병을 진단하는 질병 진단 장치에 있어서, 발생 광의 일부를 수집하는 제1 집광부, 발생 광의 일부를 수집하는 제2 집광부; 제2 집광부에 의해 수집된 광의 스펙트럼을 분석하는 분광기, 분광기에 의해 분석된 스펙트럼과, 기준 스펙트럼 데이터를 비교하는 분광 데이터 비교부, 제1 집광부에 의해 수집된 광을 디지털 이미지로 변환하는 CCD, CCD에 의해 변환된 디지털 이미지와, 기준 이미지를 비교하는 이미지 데이터 비교부, 및 분광 데이터 비교부의 비교 결과와, 이미지 데이터 비교부의 비교 결과 중 적어도 하나를 참조하여 상기 신체 조직에 질병이 있는지 여부를 판단하는 질병 진단부를 포함하며, 신체 조직에 조사되는 광은 콜리메이트 광인 것을 특징으로 하는 질병 진단 장치가 개시된다.
Abstract:
A hyperspectral imaging system and a method are described herein for using an array of optical homogenizing elements to reduce spectral noise in an image of a real-world scene. In one embodiment, the hyperspectral imaging system and method use the array of optical homogenizing elements for homogenizing a spatial, an angular, and a polarization distribution of light from different elements within the real-world scene before it is measured by a spectrometer.
Abstract:
A dual pass monochromator for generating excitation radiation and isolating emission radiation at prescribed wavelengths, useful for analyzing florescence in multi-assay micro-titer plate readers is disclosed. The optically dispersive element can be used to receive radiation through an entrance aperture; isolate a prescribed wavelength band; and then direct the prescribed wavelength band through a first exit aperture onto a sample. The excited emissions from the sample can then be received back through the first exit aperture and be directed to the optically dispersive element to isolate the emission wavelength band and direct it onto a detector through a second exit aperture. Band pass elements can be optically coupled to the optically dispersive element to tune the excitation and emission wavelength bands. Band pass optical elements can be dispersive diffraction gratings, or non-dispersive optical filters. The dual pass monochromator can be modular and include a number of optically isolated compartments.
Abstract:
Ein Verfahren zur Kompensation von temperaturbedingten Messfehlern einer optischen Anordnung, die mindestens eine Linse (2) aufweist, ist im Hinblick auf eine möglichst kostengünstige und zuverlässige Kompensation temperaturbedingter Messfehler ohne erheblichem konstruktivem Mehraufwand derart ausgestaltet, dass die optische Anordnung (1, 1') von einem Mehrfarbenlichtstrahl (5) passiert wird, der infolge von chromatischer Abberation der Linse (2) in unterschiedlich weit von der Linse (2) entfernt liegende Punkte fokussiert wird, dass ein Teil des Spektrums des Lichtstrahls (5) innerhalb der optischen Anordnung (1, 1') zumindest teilweise reflektiert und einer Detektionseinrichtung (12) zugeleitet wird, durch die eine Bestimmung eines Spektrums durchgeführt wird, dass aus dem durch die Detektionseinrichtung (12) bestimmten Spektrum auf die Temperatur der Anordnung (1, 1') geschlossen wird und dass mittels der derart bestimmten Temperatur eine Kompensation von temperaturbedingten Messfehlern durchgeführt wird. Eine entsprechende optische Anordnung ist angegeben.
Abstract:
The invention is based on a method and a device for identifying properties of moving objects such as articles, materials, layers, inter alia. The data representing the properties of the objects are determined and evaluated by means of a spectral spatially resolved quantitative and/or qualitative analysis in real time. According to the invention, a spatially resolved spectral image of the object region to be measured is generated. Said image, prior to its evaluation, is subjected optically to a spatially resolved spectral masking which permits only selected significant spatially resolved spectral values and/or spectral ranges to pass. Afterwards, said significant spatially resolved spectral values and/or spectral ranges are optically compressed to form a readable data image. By virtue of the combination of the optical masking with an optical data compression, significant spectral data having a plurality of spectral properties can be compressed flexibly to form a new spatially resolved spectral image and the latter can be imaged on a multi- or one-dimensional line. The evaluation of the spectral image of an object takes place very rapidly, such that a high number of parts per second can be identified.
Abstract:
A sensing apparatus (10) consisting of more than one diode laser (12) having select lasing frequencies, a multiplexer (16) optically coupled to the outputs of the diode lasers with the multiplexer being further optically coupled to a pitch side optical fiber. Multiplexed laser light is transmitted through the pitch side optical fiber to a pitch optic (20) operatively associated with a process chamber (22) which may be a combustion chamber or the boiler of a coal or gas fired power plant. The pitch optic (20) is oriented to project multiplexed laser output through the process chamber. Also operatively oriented with the process chamber is a catch optic (24) in optical communication with the pitch optic to receive the multiplexed laser output projected through the process chamber. The catch optic (24) is optically coupled to an optical fiber which transmits the multiplexed laser output to a demultiplexer (28). The demultiplexer (28) demultiplexes the laser light and optically couples the select lasing frequencies of light to a detector (25) with the detector being sensitive to one of the select lasing frequencies.