Abstract:
The automatic soldering of printed circuit boards wherein different boards can be simultaneously processed at different stations, e.g. a fluxing station, a preheating station and a soldering station. An identification station in advance of the fluxing station controls various parameters at the processing stations in response to board type as the boards are indexed through the various stations. Parameters such as location of application, time of application, pump speed etc. may be controlled in response to board type.
Abstract:
A hot air circulation apparatus and method for wave soldering machines which heats air from a high-pressure air source and directs it at the flux applied to a printed circuit board. The heated and pressurized air also circulates air within the wave soldering machine to force the moisture out. A plurality of hot air knives are mounted adjacent heaters within the wave soldering machine and are coupled to the pressurized air source. The hot air knives include a hollow metal cylindrical member which conducts heat from the heater, and contain a plurality of orifices which increase the pressure of the air and direct the air at the flux.
Abstract:
A process of joining metal members, comprising the steps of: providing a first group of a plurality of metal members, each member having a solder bead formed thereon; providing a second group of a plurality of metal members, each member having a solder bead formed thereon; abutting the first group of metal members against the second group of metal members by direct contact between the solder beads; applying an ultrasonic vibration through the metal members to the solder beads in contact; and subsequently heating the beads to cause the solder beads to be bonded together.
Abstract:
An apparatus for depositing solder on the terminal pads of printed circuit boards in which a solder resist layer or layers having a thickness corresponding to the desired solder height border the pads. Molten solder from a reservoir is directed by nozzles against the sides of the board to fill the cavities extending above the terminal pads while the board is moving via a conveyor mechanism relative to the reservoir. The cavities when filled with molten solder are covered by a suitable element such as a flexible belt or roller. The molten solder within the covered cavities is then cooled below its solidification point and the covering element removed. If desired, part or all of the solder resist layer or layers may then be stripped from the board to leave solder pads extending above the surface of the board.
Abstract:
An integrated circuit (IC) device is mounted onto a printed circuit board (PCB) by inducing a magnetic field of a selected strength at the surface of the PCB to temporarily hold the IC device onto the PCB. The IC device is provided with magnetic material which is attracted by the magnetic field. The magnetic field is maintained while the IC device and PCB are tested, and then subsequently during soldering when the IC device is permanently bonded to the PCB.
Abstract:
Fluxing and soldering terminals on a printed circuit board by an in-line process in which flux concentration is determined at specific locations laterally of the passline. At each of the positions infrared light is passed through a wall of flux which is being directed at the board. The infrared light becomes partly absorbed by materials in the flux and the unabsorbed light which passes through the wall of flux is used to generate signals corresponding to the different wavelengths of unabsorbed light at each of the locations. This enables a determination to be made of the flux concentration at each location. The signals are preferably used to effect a change in the flow rate of flux at any specific location so as to control the amount of flux deposited upon the board. Particularly useful for "no-clean" flux applications.
Abstract:
The present invention provides a reflow apparatus and method effective to make constant the internal gas flow direction in a heating section within a reflow furnace. A circulating gas path is formed in a heating unit which collects and causes the gas to flow from a sirocco fan, up the rear side of the heating unit and then down towards a circuit board moving along a transfer path at the front side of the heating unit. Moreover, a plurality of straightening plates are arranged above the transfer path of the heating unit so as to guide the hot gas, which is flowing forwardly downwardly toward the circuit board moving along the transfer path. A blow-down nozzle is provided and includes a plurality of plates aligned in rows in the transferring direction of the circuit boards. The plates have an inverse U-shaped cross section. The blow-down nozzle is arranged below the straightening plates to cause the vertical hot gas flows to flow uniformly over the whole surface of the circuit board.
Abstract:
A system is provided for regenerating reducing agents used in ancillary chemical or electrochemical processes such as restoring solderability of electronic components to be soldered in a fluxless soldering process. The system includes a cathode, an anode, and an electrolyte system that is separated by a semipermeable ionic barrier into a catholyte and an anolyte. The catholyte includes the reduced member of a redox couple, which can be regenerated electrochemically. The redox couple of the electrolyte system is charged like a battery and discharged during the ancillary process. Regeneration of the reduced member of the redox couple is accomplished at the cathode, which may evolve hydrogen gas. Chemical balance is maintained by the semipermeable ionic barrier, which permits proton migration from the anolyte to the catholyte but acts as a barrier against diffusion and migration of cations from the catholyte to the anolyte. Ideally, the anodic reaction is breakdown of water to form oxygen, which is vented, and protons that migrate across the ionic barrier to the catholyte replacing protons consumed in the ancillary process. The overall reaction in a fluxless soldering system is reduction of metallic oxides to metal, electrochemical regeneration of reducing agents, release of oxygen, and evolution of hydrogen to produce a reducing atmosphere in an enclosed chamber containing the fluxless soldering system.
Abstract:
A method and apparatus for soldering areas of two parts together such as solder leads of an electronic component to the solder pads on a printed circuit board which includes the step of raising the temperature of the abutting areas to a value greater than the melting temperature of the solder and while at the elevated temperature, vibrating the parts to align (center) the areas with respect to one another. Accordingly a reflow oven designed to practice this invention includes a conveyor system with three continuous belts leading in series from the entrance to the exit of the oven. The first belt carries the parts through a temperature zone where melting of the binder occurs; the second belt carries the parts through a hotter zone where melting of the solder and vibration to effect centering occurs; the third belt carries the part through the cooling zone. Separation of the belt into three isolated sections prevents disturbance of the parts when they are located in areas where the solder is not molten.
Abstract:
A technique for simultaneously forming large numbers of solder ball (or bump) contacts on a surface of a substrate is described. A dissolvable film carrier is provided with holes arranged in a shape to correspond to an array of contact pads on a substrate. The holes are filled with solder. The film carrier retains the solder. The carrier is placed over the surface of the substrate and is heated, causing the solder to re-flow and to wet and to adhere to the contact pads. The carrier, which resists the re-flow temperature, maintains the shape of the solder contacts while cooling. After cooling, the film carrier can be removed from around the solder contacts with a suitable solvent.