Abstract:
Die Erfindung betrifft eine Haltestruktur (1), die zum Zusammenwirken mit einem optischen Sensormodul (2) und einem an der Haltestruktur befestigen Smartphone (3) eingerichtet ist, um ein optisches Analysesystem zu bilden. Die Erfindung betrifft außerdem ein optisches Sensormodul (2) für eine solche Haltestruktur sowie ein Set aus einer derartigen Haltestruktur und einem derartigen Sensormodul.
Abstract:
L'objet de l'invention est un appareil (1) de mesure de teinte dentaire comprenant un boîtier (11), une poignée (10) et une tête de mesure (20), ledit appareil étant caractérisé en ce que ladite tête de mesure (20) comprend : - un corps creux (40) s'étendant selon un axe longitudinal (46), ledit corps creux comprenant une extrémité proximale (48) et une extrémité distale coudée (49) par rapport à l'axe longitudinal (46), ladite extrémité distale (49) étant munie d'un embout amovible (26) destiné à venir en contact avec une surface d'analyse d'une dent; - au moins une source lumineuse et des moyens d'acquisition d'image solidaires au corps creux (40), ledit corps creux étant apte à transmettre la lumière de ladite source lumineuse depuis l'extrémité proximale jusqu'à l'extrémité distale; et en ce que ledit appareil comprend un ensemble d'orientation permettant de monter l'extrémité proximale (48) du corps creux dans le boîtier (11) de façon à ce que la tête de mesure (20) occupe différentes positions angulaires par rapport au boîtier (11).
Abstract:
Interferometric transform spectrometer (ITS) systems and methods of operation thereof. In one example, an ITS system includes a Michelson interferometer that introduces a varying optical path length difference (OPD) between its two arms so as to produce an interferogram, a detector that receives and samples the interferogram, and a scan controller coupled to the detector and to Michelson interferometer. The scan controller controls the Michelson interferometer to vary the OPD in discrete steps such that the detector provides M samples of the interferogram for each of two scan segments. In the first scan segment, the M samples have a uniform or non-uniform sample spacing and the OPD has a first maximum value. In the second scan segment, the M samples have an incrementally increasing sample spacing and the OPD has a second maximum value that is at least twice the first maximum value.
Abstract:
An all-graphite interferometer bearing assembly is introduced that allows the movement of a movable mirror in a Michelson interferometer without degradation during use. The assembly includes a stationary hollow graphite tube and a movable assembly which includes a mirror and a monolithic graphite member slidably disposed within the bore of the graphite tube that is composed of the same grade of graphite material as the monolithic graphite member. The result is a robust novel moving mirror arrangement in a Michelson interferometer that enables precise mirror alignment control, a long stroke length, excellent vibration damping and reduced sensitivity to external vibrations.
Abstract:
A spectroscopic instrument (1) comprising at least one load bearing anti-vibration foot portion (3) for supporting the instrument on a surface. Each foot portion (3) comprises a load bearing elastomeric portion (5) and an internal stub portion (4) which is provided within the elastomeric portion and which is rigid compared to the elastomeric portion. An internal wall of the elastomeric portion (5) is spaced from an external wall of the stub portion (4) such that the elastomeric portion (5) is moveable relative to the stub portion (4) to absorb vibration. Liquid is provided in the spacing between the internal wall of the elastomeric portion (5) and the external wall of the stub portion (4) to damp such movement.