Abstract:
Die Erfindung betrifft eine Anordnung zur Erkennung von Schichten (3; 14), die auf Oberflächen von Bauteilen bzw. Gegenständen (2) angeordnet sind, und Bestimmung der chemischen Eigenschaften und der Oberflächenbeschaffenheit dieser Schichten (3; 14). Sie umfasst eine Lichtquelle (4) zur Beleuchtung der zu untersuchenden Schicht (3; 14) auf der Bauteiloberfläche und Mittel zur Abbildung der Lichtquelle (4) über die zu untersuchende Oberfläche (3') der Schicht (3; 14) auf einen Eintrittsspalt (7). Der Eintrittsspalt (7) wird wellenlängenabhängig durch ein Gitter (10) auf eine zweidimensionale Detektoreinheit (8) abgebildet. Eine Auswerteeinheit (11), die mit der Detektoreinheit (8) elektrisch verbunden ist, dient zur Auswertung und Verarbeitung der von den belichteten Detektorelementen (9) der Detektoreinheit (8) gelieferten Signale.
Abstract:
The present invention provides a wavemeter for an ultraviolet laser capable of long life beam quality monitoring in a pulsed ultraviolet laser system at pulse rates greater that 2000 Hz at pulse energies at 5 mJ or greater. In a preferred embodiment an enhanced illumination configuration reduces per pulse illumination of an etalon by a factor of 28 compared to a popular prior art configuration. Optics are provided in this embodiment which reduce light entering the etalon to only that amount needed to illuminate a linear photo diode array positioned to measure interference patterns produced by the etalon. In this preferred embodiment tow sample beams produced by reflections from two surfaces of a beam splitter are diffused by a defractive diffuser and the output of the defractive diffuser is focused on tow separate secondary diffusers effectively combining both beams in two separate secondary diffusers effectively combining both beams in two separate spectrally equivalent diffuse beams. One beam is used for wavelength and bandwidth measurement and the other beam is used for calibration. In preferred embodiments an etalon chamber contains nitrogen with an oxygen concentration of between 1.6 and 2.4 percent.
Abstract:
The present invention is directed to an assembly for use in detecting an analyte in a sample based on thin-film spectral interference. The assembly includes a light source to emit light signals; a light detector to detect light signals; a coupler to optically couple the light source and the light detector to a waveguide tip; a monolithic substrate having a coupling side and a sensing side; and a lens between the waveguide tip and the monolithic substrate. The lens relays optical signals between the waveguide tip and the monolithic substrate.
Abstract:
A disease diagnosis and skin age measurement apparatus includes: a first light collection unit; a second light collection unit; a spectrometer configured to measure a spectrum of the light which is collected by the second light collection unit; a spectrum data comparison unit for disease diagnosis configured to compare the spectrum measured by the spectrometer and reference spectrum data for disease diagnosis; a CCD; an image data comparison unit configured to compare the digital image converted by the CCD and a reference image; a disease diagnosis unit configured to determine whether there is a disease in the body tissue; and/or a spectrum data comparison unit for skin age measurement configured to measure skin age by comparing a spectrum measured by the spectrometer and reference spectrum data for skin age measurement, wherein the light projected onto the body tissue is collimate light.
Abstract:
A light source for near-infrared transmission and reflection spectroscopy can be constructed from a combination of a high power blue or blue-green light emitting diode (LED) and a phosphor element based on an inorganic material. The phosphor element absorbs the LED light and, in response to the LED excitation, emits luminescence that continuously covers the 700-1050 nm range. One possible material that can be used for such a near-infrared emitting phosphor element is a single crystal rod of Ti+3 doped Sapphire. An alternative near-infrared emitting phosphor material is a disk or rectangular shaped composite of Ti+3 doped Sapphire powder embedded in a clear optical epoxy or silicone encapsulant. Such a combination of a blue LED for excitation of a phosphor element that emits in a broad wavelength band has been widely used in white LEDs where the emission is in the 400-700 nm range.
Abstract:
A hybrid image-pupil optical reformatter and method for optional use with a spectrometer is disclosed, which performs beam slicing in pupil space and stacks replicas of the input source generated from the pupil beam slices in image space. The optical reformatter comprises a collimator which receives an input light and produces a collimated beam; a first optical element which receives the collimated beam, redirects portions of the collimated beam back toward the collimator as reimaged beams and permits portions of the collimated beam to pass; a second optical element which receives the reimaging beams and redirects the reimaging beams back toward the collimator and the first optical element; to form an output beam comprising the portions of the collimated beams that are not redirected toward the collimator by the first optical element. Also disclosed is the use of the reformatter for reformatting the input light of a spectrometer system, and the use of the reformatter as part of a spectrometer device.
Abstract:
A monolithic optical element and system is used for collimating or focusing laser light from or to optical fibers. The optical fiber terminates in a tip that directly abuts against the first surface of the optical element. The optical element may provide a collimation or focusing function depending upon whether the abutting fiber delivers light for collimation or receives focused light from a collimated beam. The optical element may be a standard or modified barrel or drum lens, with the first and second surfaces being convex curved surfaces having the same or different radii of curvature. The end of the optical element to which the fiber abuts may have a diameter to match the inner diameter of a ferrule for positioning the fiber. A pair of the elements may be used for collimation and focusing in a Raman probehead or other optical detection system.
Abstract:
The invention is an optical method and apparatus for measuring the temperature of semiconductor substrates in real-time, during thin film growth and wafer processing. Utilizing the nearly linear dependence of the interband optical absorption edge on temperature, the present method and apparatus result in highly accurate measurement of the absorption edge in diffuse reflectance and transmission geometry, in real time, with sufficient accuracy and sensitivity to enable closed loop temperature control of wafers during film growth and processing. The apparatus operates across a wide range of temperatures covering all of the required range for common semiconductor substrates.
Abstract:
An optical device is provided that includes a converging lens device, a transmitting optical fiber, a sample holder, and a receiving optical fiber. The converging lens device focuses light onto the transmitting optical fiber, which receives the focused light through an entrance face and transmits the light from an exit face, through a sample, and onto the receiving optical fiber. The sample holder holds the sample for analysis. The receiving optical fiber receives the light through an entrance face of the receiving optical fiber after transmission through the sample. The converging lens device is positioned to focus the light onto the entrance face of the transmitting optical fiber such that a half-angle of the angular distribution of the focused light that reaches the entrance face of the transmitting optical fiber is selected to underfill an entrance aperture of the entrance face of the receiving optical fiber in both a spatial dimension and an angular dimension.
Abstract:
A method and apparatus for enhanced THz radiation coupling to molecules, includes the steps of depositing a test material near the discontinuity edges of a slotted member, and enhancing the THz radiation by transmitting THz radiation through the slots. The molecules of the test material are illuminated by the enhanced THz radiation that has been transmitted through the slots, thereby producing an increased coupling of EM radiation in the THz spectral range to said material. The molecules can be bio-molecules, explosive materials, or species of organisms. The slotted member can be a semiconductor film, a metallic film, in particular InSb, or layers thereof. THz detectors sense near field THz radiation that has been transmitted through said slots and the test material.