Abstract:
A multilayered circuit board which is provided with a low-permittivity interlayer insulating film, and which can significantly improve the performance such as signal transmission characteristics of the multilayered circuit board such as a package and a printed board, because the surface in contact with the interlayer insulating film of the circuit board has no unevenness to eliminate the lowering of production yield and the deterioration of high-frequency signal transmission characteristics; and electronic equipment using the circuit board. The multilayered circuit board comprises, mounted on a substrate, plural wiring layers and plural insulating layers positioned between the plural wiring layers, wherein at least part of the plural insulating layers are composed of a porous insulating layer containing at least any of materials selected from a porous material group consisting of porous material, aerogel, porous silica, porous polymer, hollow silica and hollow polymer, and a non-porous insulating layer formed on at least one surface of the porous insulating layer and not containing the porous material group.
Abstract:
According to the present invention, there is provided a low dielectric loss tangent resin composition containing a crosslinking component having a weight average molecular weight of not more than 1,000 and a plurality of styrene groups and represented by the formula [1], wherein R is a hydrocarbon skeleton which may have a substituent, R1 is hydrogen, methyl or ethyl, m is an integer of 1-4 and n is an integer of 2 or more, and further containing at least one member selected from a high polymer having a weight average molecular weight of not less than 5,000 and a filler, which resin composition can give a cured product having a good flexibility, high tensile strength and low dielectric constant and dielectric loss tangent.
Abstract:
According to the present invention, there is provided a low dielectric loss tangent resin composition containing a crosslinking component having a weight average molecular weight of not more than 1,000 and a plurality of styrene groups and represented by the formula [1], wherein R is a hydrocarbon skeleton which may have a substituent, R1 is hydrogen, methyl or ethyl, m is an integer of 1-4 and n is an integer of 2 or more, and further containing at least one member selected from a high polymer having a weight average molecular weight of not less than 5,000 and a filler, which resin composition can give a cured product having a good flexibility, high tensile strength and low dielectric constant and dielectric loss tangent.
Abstract:
A printed circuit board material for embedded passive devices, which has excellent electromagnetic properties and reliability is provided. The invention provides a printed circuit board material comprises: a conductive copper foil layer; a resin bonding layer formed on the conductive layer and including above 70-100 vol % of resin and 0-30 vol % of filler; and a functional layer formed on the resin bonding layer and including resin and filler. The printed circuit board material has the resin bonding layer interposed between the copper foil layer and the functional layer. Thus, even when the content of fillers in the functional layer is increased, the adhesion strength between the conductive layer and the functional layer is ensured without deteriorating the properties of the functional layer, such as dielectric and magnetic properties.
Abstract:
A printed circuit board material for embedded passive devices, which has excellent electromagnetic properties and reliability is provided. The invention provides a printed circuit board material comprises: a conductive copper foil layer; a resin bonding layer formed on the conductive layer and including above 70-100 vol % of resin and 0-30 vol % of filler; and a functional layer formed on the resin bonding layer and including resin and filler. The printed circuit board material has the resin bonding layer interposed between the copper foil layer and the functional layer. Thus, even when the content of fillers in the functional layer is increased, the adhesion strength between the conductive layer and the functional layer is ensured without deteriorating the properties of the functional layer, such as dielectric and magnetic properties.
Abstract:
A thermoplastic or thermosetting B-stageable or pre-formed film underfill encapsulant composition that is used in the application of electronic components to substrates. The composition comprises a resin system comprising thermoplastic or thermally curable resin, an expandable microsphere, a solvent, and optionally a catalyst. Various other additives, such as adhesion promoters, flow additives and rheology modifiers may also be added as desired. The underfill encapsulant may be dried or B-staged to provide a coating on the substrate or component that is smooth and non-tacky. In an alternative embodiment, the underfill encapsulant is a pre-formed film. In both embodiments the expandable filler material expands upon the application of higher temperatures to form a closed-cell foam structure in the desired portion of the assembly.
Abstract:
According to the present invention, there is provided a low dielectric loss tangent resin composition containing a crosslinking component having a weight average molecular weight of not more than 1,000 and a plurality of styrene groups and represented by the formula null1null, 1 wherein R is a hydrocarbon skeleton which may have a substituent, R1 is hydrogen, methyl or ethyl, m is an integer of 1-4 and n is an integer of 2 or more, and further containing at least one member selected from a high polymer having a weight average molecular weight of not less than 5,000 and a filler, which resin composition can give a cured product having a good flexibility, high tensile strength and low dielectric constant and dielectric loss tangent.
Abstract:
Methods for inhibiting abrasive wear of a fiber strand comprising at least one glass fiber by sliding contact with surface asperities of a solid object, comprising (a) applying a composition to at least a portion of a surface of at least one glass fiber of a glass fiber strand; (b) at least partially drying the composition to form a sized glass fiber strand having a residue of the composition upon at least a portion of the surface of the at least one class fiber; and (c) sliding at least a portion of the glass fiber strand to contact surface asperities of a solid object, the surface asperities having a hardness value which is greater than a hardness value of the at least one glass fiber, such that abrasive wear of the at least one glass fiber of the glass fiber strand by contact with the surface asperities of the solid object is inhibited by the inorganic solid lubricant particles.
Abstract:
Composite materials comprising at least 60 volume %, preferably 70 volume %, of particles of finely powdered filler material in a matrix of poly(arylene ether) polymer material are made by forming a mixture of the components, forming the required bodies therefrom, and then heating and pressing the bodies to a temperature sufficient to melt the polymer and to a pressure sufficient to disperse the melted polymer into the interstices between the filler particles. Surprisingly these polymer materials can only be effective as bonding materials when the solids content is as high as that specified, since with lower contents the resultant bodies are too friable. This is completely contrary to accepted prior art practice which considers that composites are progressivly weakened as the solids content is increased, so that such content must be limited. In processes to obtain as complete a dispersion of the components as possible they are individually dispersed in a liquid dispersion medium containing the polymer together with necessary additives, each mixture being ground if required to obtain a desired particle size, the mixtures are mixed, again ground to produce thorough dispersion, are separated from the liquid dispersion medium and green articles formed from the resulting pasty mixture. The green articles are then heated and pressed as described above. Mixtures of different filler materials may be used to tailor the electrical and physical properties of the final materials. The articles preferably comprise substrates for use in electronic circuits.
Abstract:
Composite materials comprising at least 60 volume %, preferably 70 volume %, of particles of finely powdered filler material in a matrix of poly(arylene ether) polymer material are made by forming a mixture of the components, forming the required bodies therefrom, and then heating and pressing the bodies to a temperature sufficient to melt the polymer and to a pressure sufficient to disperse the melted polymer into the interstices between the filler particles. Surprisingly these polymer materials can only be effective as bonding materials when the solids content is as high as that specified, since with lower contents the resultant bodies are too friable. This is completely contrary to accepted prior art practice which considers that composites are progressivly weakened as the solids content is increased, so that such content must be limited. In processes to obtain as complete a dispersion of the components as possible they are individually dispersed in a liquid dispersion medium containing the polymer together with necessary additives, each mixture being ground if required to obtain a desired particle size, the mixtures are mixed, again ground to produce thorough dispersion, are separated from the liquid dispersion medium and green articles formed from the resulting pasty mixture. The green articles are then heated and pressed as described above. Mixtures of different filler materials may be used to tailor the electrical and physical properties of the final materials. The articles preferably comprise substrates for use in electronic circuits.