Abstract:
An exemplary printed circuit board includes a substrate, a differential transmission line, and at least two weld pad pairs. The differential transmission line and the at least two weld pad pairs are disposed on the substrate. The differential transmission line includes two parallel signal conductors disposed on the substrate. Each of the two signal conductors is electrically connected to an edge of one of the weld pads of a respective pair of the at least two weld pad pairs. Thereby, the two signal conductors of the differential transmission line can extend in the same distance anywhere, particularly in the position where the two signal conductors pass the two weld pad pairs. As a result, the coupling performance and the capability of the differential transmission line to resist electromagnetic interference are both enhanced.
Abstract:
A flexible wiring board is provided having a wiring structure which can reduce transmission loss by reducing impedance mismatching even if being folded in a three-dimensional manner. In a flexible wiring board 10 having a characteristic impedance control circuit 20, the flexible wiring board has a planar projection shape of a folded spot 20A in the characteristic impedance control circuit after folding in an arc state along a tangent.
Abstract:
An exemplary printed circuit board includes a substrate, a differential transmission line, and at least two weld pad pairs. The differential transmission line and the at least two weld pad pairs are disposed on the substrate. The differential transmission line includes two parallel signal conductors disposed on the substrate. Each of the two signal conductors is electrically connected to an edge of one of the weld pads of a respective pair of the at least two weld pad pairs. Thereby, the two signal conductors of the differential transmission line can extend in the same distance anywhere, particularly in the position where the two signal conductors pass the two weld pad pairs. As a result, the coupling performance and the capability of the differential transmission line to resist electromagnetic interference are both enhanced.
Abstract:
Terminal electrodes 9 for carrying a high frequency device 3 are formed on a surface of a circuit board having its reverse surface covered with a reverse surface conductor layer 6, and a plurality of signal lines 2 for exchanging a signal between the high frequency device 3 and an external circuit are formed thereon. The terminal electrode 9 is arranged at the center of the circuit board, and the signal lines 2 radially extends from the terminal electrode 9. Electromagnetic interference between the signal lines 2 can be reduced, so that out-of-band attenuation characteristics and isolation characteristics can be satisfactorily exhibited in a case where the high frequency device 3 is a duplexer.
Abstract:
In a fitting region for a SAW filter which includes langasite as its piezoelectric element, there are included an input side terminal electrode and an output side terminal electrode which are connected to an input terminal and to an output terminal of the SAW filter. To each of the terminal electrodes, at a position which is separated by just a predetermined distance from the fitting region of the SAW filter, there is connected a micro strip line which extends in mutually opposite directions along a direction which is parallel to the transmission direction of a frequency signal within the SAW filter. A slit is provided in the fitting region of the SAW filter and extends in a direction which intersects the transmission direction of the frequency signal within the SAW filter. A plurality of through holes are provided in the printed substrate and electrically connect together its surface and its rear surface which is grounded. Furthermore, there is provided a protective member which has a conductive surface and which is in contact with the surface of said filter, and said conductive surface of said protective member which is in contact with the surface of said filter is set so as to be of the same size as the surface of said filter, or so as to be smaller than it.
Abstract:
An electrical connection board includes electrical connection terminals on one face with a view toward connecting with a semiconductor component and electrical connection tracks connected respectively to these terminals. The terminals are arranged in a square matrix having two orthogonal directions. On its face, the board includes a multiplicity of identical adjacent connection groups, each group having N adjacent terminals and N tracks placed along this direction while extending towards an edge of the matrix. The terminals of a group are offset by one pitch relative to the terminals of an adjacent group. The board and a semiconductor component are connected together by electrical connection balls.
Abstract:
A wiring board includes: an insulating base; a plurality of conductive wirings; and bumps formed on the conductive wirings, respectively. The conductive wirings can be connected with electrode pads of a semiconductor element via the bumps. The conductive wirings include a connection terminal portion at an end portion opposite to the other end portion where the bumps are formed, and at the connection terminal portion, the conductive wirings can be connected with an external component. The conductive wirings include first conductive wirings and second conductive wirings, on which the bumps are formed respectively at a semiconductor element mounting region. The first conductive wirings extend from the bumps to the connection terminal portion. The second conductive wirings extend beyond the semiconductor element mounting region from the bumps but do not reach the connection terminal portion. End portions of the second conductive wirings extending beyond the semiconductor element mounting region are separated electrically from the first conductive wirings by a cutting portion formed at a boundary region with the first conductive wirings. Irrespective of the state of operating electrode pads of a semiconductor element to be mounted, the bumps can be arranged at constant intervals.
Abstract:
A printed circuit board includes a group of pads suitable to be soldered to a respective group of solder-balls of a device. Each pad of the group has a crack initiation point on its perimeter at a location where cracks in a solder-ball are anticipated to start after that solder-ball is soldered to that pad. For a pad of that group having a microvia located therein, a center of that microvia is located farther than a center of that pad from its crack initiation point. For a pad of that group having a trace merging along a portion of its perimeter, that portion does not include a vicinity of that crack initiation point.
Abstract:
A flexible printed circuit board includes a flexible substrate, which has a bonding zone, a folding zone, and a folding line between the bonding zone and the folding zone, two electrically conductive contacts respectively located at the bonding zone, two lead wires each having an extension portion respectively electrically connected to the electrically conductive contacts and arranged in parallel to the folding line and a connecting portion extending integrally from the extension portion toward the folding zone, and a protective layer covered on the flexible substrate over the lead wires. The protective layer has openings corresponding to the electrically conductive contacts.
Abstract:
There is provided a wiring board including an insulation substrate and a wiring layer which is located on at least one main surface of the insulation substrate, wherein the insulation substrate comprises a woven fabric which is made of yarns and an organic resin with which the woven fabric is impregnated, and at least one wiring of wirings which form the wiring layer extends over the woven fabric except for top portions of the yarns.