Abstract:
The disclosed embodiments include a trailer for an autonomous vehicle controlled by a command and control interface. The trailer includes a trailer body configured to retain the autonomous vehicle in an undeployed configuration. The trailer also anchors the autonomous vehicle in a deployed configuration. A tether is provided having a first end coupled to the trailer body and a second end that is configured to couple to the autonomous vehicle. A winch is utilized to adjust a length of the tether to move the autonomous vehicle between the undeployed configuration and deployed configuration. Further, a communication system communicates with the command and control interface and the autonomous vehicle to control movement of the autonomous vehicle between the undeployed configuration and deployed configuration.
Abstract:
A hybrid VTOL vehicle having an envelope configured to provide hydrostatic buoyancy, a fuselage attached to the envelope and having at least one pair of wings extending from opposing sides thereof to produce dynamic lift through movement, and a thrust generation device on each wing and configured to rotate with each wing about an axis that is lateral to a longitudinal axis of the envelope to provide vertical takeoff or landing capabilities. Ideally, the envelope provides negative hydrostatic lift to enhance low-speed and on-the-ground stability.
Abstract:
Lighter-than-air systems, methods, and kits for obtaining aerial images are described. For example, various methods for determining planned ascent, drift, and/ or descent of a lighter-than-air system are described. In addition, various structural arrangements of lighter-than-air systems for accomplishing planned ascent, drift, and/or descent and obtaining aerial images are described.
Abstract:
An aerial vehicle is described which comprises: a first compartment (13) for holding a lighter than air gas; a second compartment (6, 4) for holding atmospheric air and having an inlet and an outlet; a solar panel (41) for converting sunlight into electricity; a compressor (242) for pumping atmospheric air through the inlet into the second compartment; control means (1,3) for controlling the pitch and yaw of the vehicle; and a controller (209) for controlling the buoyancy of the vehicle via the compressor and the outlet such that the vehicle is either lighter than the surrounding air and rising or heavier than the surrounding air and falling, and for controlling the control means such that the rising and falling motion includes a horizontal component. In another embodiment the solar panel is replaced by an engine and a fuel tank for storing fuel for the engine is also provided. The aerial vehicle can remain airborne for extended periods by using buoyancy propulsion. In the embodiments including a solar panel, a system including a light transmission station may be provided to supply energy to the solar panel from the light transmission station rather than relying on the incident sunlight alone. A method of flight using buoyancy propulsion is also described.
Abstract:
A neutral buoyant airship, such as a blimp, contains a lifting body which allows the airship to remain neutrally buoyant in air and fuel cell located in the airship. A method of generating power in the neutrally buoyant airship, comprising providing a fuel and a oxidizer to a solid oxide fuel cell to generate power, and providing heat from the fuel cell to a remotely located lifting body, wherein the lifting body allows the airship to remain neutrally buoyant in air.
Abstract:
An airship (20) has a generally spherical shape and has an internal envelope (24) for containing a lifting gas such as Helium or Hydrogen. The airship has a propulsion and control system (36, 38) that permits it to be flown to a desired loitering location, and to be maintained in that location for a period of time. In one embodiment the airship may achieve neutral buoyancy when the internal envelope is as little as 7 % full of lifting gas, and may have a service ceiling of about 60,000 ft. The airship has an equipment module (180) that can include either communications equipment, or monitoring equipment, or both. The airship can be remotely controlled from a ground station. The airship has a solar cell array and electric motors (44, 46) of the propulsion and control system are driven by power obtained from the array. The airship also has an auxiliary power unit (52) that can be used to drive the electric motors. The airship can have a pusher propeller that assists in driving the airship and also moves the point of flow separation of the spherical airship further aft. In one embodiment the airship can be refuelled at altitude to permit extended loitering.
Abstract:
본발명은헬륨충진탐사체에대한것으로서, 중심이편심된우산형태의연과, 연내부에다수개의부력챔버가구비되어강한바람이불더라도수직을유지할수 있는헬륨충진탐사체에관한것이다. 본발명은중심이편심된우산형태의연과그 내부를채우는다수개의부력챔버를이용하여강한바람이불더라도수직을유지할수 있는헬륨충진탐사체를제공할수 있다. 또한, 본발명은연에장착된지지대에수평대를장착하여헬륨충진탐사체를더욱수직으로유지시킬수 있다.