Abstract:
A method of manufacturing a resonant transducer having a vibration beam includes: (a) providing an SOI substrate including: a first silicon layer; a silicon oxide layer on the first silicon layer; and a second silicon layer on the silicon oxide layer; (b) forming a first gap and second gap through the second silicon layer by etching the second silicon layer using the silicon oxide layer as an etching stop layer; (c) forming an impurity diffusion source layer on the second silicon layer; (d) forming an impurity diffused layer in a surface portion of the second silicon layer; (e) removing the impurity diffusion source layer through etching; and (f) removing at least a portion of the silicon oxide layer through etching such that an air gap is formed between the first silicon layer and a region of the second silicon layer surrounded by the first and second gaps.
Abstract:
The invention relates to the production of multilayer microcomponents comprising one or more layers, each consisting of a material M chosen from metals, metal alloys, glasses, ceramics and glass-ceramics. The method consists in depositing, on a substrate, one or more layers of an ink P and one or more layers of an ink M, each layer being deposited in a predetermined pattern, each ink layer being at least partially consolidated before deposition of the next layer, in completely consolidating the partially consolidated layers of ink M after their deposition, and in completely or partially removing the material of each of the layers of ink P. An ink P consists of a thermosetting resin containing a mineral filler or of a mixture comprising a mineral material and an organic binder. An ink M consists of a mineral material that is a precursor of the material M and an organic binder. The inks are deposited by casting or by extrusion.
Abstract:
Le circuit intégré comporte un substrat de support (1) ayant des première et seconde faces principales (2a, 2b) opposées. Une cavité traverse le substrat de support (1) et relie les première et seconde faces principales (2a, 2b). Le circuit intégré comporte un dispositif à élément mobile (5) dont l'élément mobile (6) et un couple d'électrodes (7) associées sont inclus dans une cavité. Un noeud d'ancrage de l'élément mobile (6) est localisé au niveau de la première face principale (2a). Le circuit intégré comprend une première puce (3) élémentaire disposée au niveau de la première face principale (2a) et connectée électriquement au dispositif à élément mobile (5).
Abstract:
A resonator (2) having an effective spring constant (k z ) and comprising a beam (4) having a beam spring constant (k B ) adapted to resonate in an oscillation direction, and extending at a non-zero angle (θ) to the oscillation direction, wherein the resonator has a predetermined geometry and is formed from one or more materials, the or each material having a coefficient of thermal expansion (CTE), the CTE of the or each material together with the predetermined geometry of the resonator causing θ to vary with temperature, such that the temperature dependence of the beam spring constant is compensated for, resulting in the effective spring constant of the resonator remaining substantially constant within an operating temperature range.
Abstract:
A microelectromechanical system (MEMS) device includes a semiconductor substrate, a MEMS including a fixed electrode and a movable electrode formed on the semiconductor substrate through an insulating layer, and a well formed in the semiconductor substrate below the fixed electrode. The well is one of an n-type well and a p-type well. The p-type well applies a positive voltage to the fixed electrode while the n-type well applies a negative voltage to the fixed electrode.
Abstract:
A method for fabrication of single crystal silicon micromechanical resonators using a two-wafer process, including either a Silicon-on-insulator (SOI) (104) or insulating base and resonator wafers (108) , wherein resonator anchors (122, 124) , a capacitive air gap (116) , isolation trenches (128, 130) , and alignment marks are micromachined in an active layer (114) of the base wafer; the active layer of the resonator wafer (124) is bonded directly to the active layer of the base wafer; the handle (144) and dielectric layers (140) of the resonator wafer are removed; viewing windows are opened in the active layer of the resonator wafer; masking the single crystal silicon semiconductor material active layer of the resonator wafer with photoresist material; a single crystal silicon resonator is machined in the active layer of the resonator wafer using silicon dry etch micromachining technology; and the photoresist material is subsequently dry stripped.
Abstract:
A piezoelectric filter having a smaller size is provided. A piezoelectric filter (10) includes a first substrate (22) having at least one first piezoelectric resonator (25) disposed on a main surface of the first substrate (22); a second substrate (12) having at least one second piezoelectric resonator (15) disposed on a main surface of the second substrate (12); a connection pattern (20) extending around the first piezoelectric resonator (25) and the second piezoelectric resonator (15) and disposed between the first substrate (22) and the second substrate (12), the main surface of the first substrate (22) facing the main surface of the second substrate (12), the first piezoelectric resonator (25) being bonded to the second piezoelectric resonator (15) with the connection pattern (20), and the first piezoelectric resonator (25) being remote from the second piezoelectric resonator (15), and a connecting layer (24x) for bonding a pad (28x) to a pad (18x), the pad 2(8x) being disposed on the main surface of the first substrate (22) and electrically connected to the first piezoelectric resonator (25), and the pad (18x) being disposed on the main surface of the second substrate (12) and electrically connected to the second piezoelectric resonator (15).
Abstract:
A method for forming a vibrating micromechanical structure having a single crystal silicon (SCS) micromechanical resonator formed using a two-wafer process, including either a Silicon-on-insulator (SOI) or insulating base and resonator wafers, wherein resonator anchors, capacitive air gap, isolation trenches, and alignment marks are micromachined in an active layer of the base wafer; the active layer of the resonator wafer is bonded directly to the active layer of the base wafer; the handle and dielectric layers of the resonator wafer are removed; windows are opened in the active layer of the resonator wafer; masking the active layer of the resonator wafer with photoresist; a SCS resonator is machined in the active layer of the resonator wafer using silicon dry etch micromachining technology; and the photoresist is subsequently dry stripped. A patterned SCS cover is bonded to the resonator wafer resulting in hermetically sealed chip scale wafer level vacuum packaged devices.