Abstract:
A MEMS gyroscope is disclosed herein, wherein the MEMS gyroscope comprises a movable portion capable of moving in response to angular velocity, a conducting wire attached to the movable portion for generating magnetic field, and a spintronic device for measuring the magnetic field. The conducting wire is disposed such that the current it carries is substantially perpendicular to the sensing direction of the sensing mode of the proof-mass.
Abstract:
A chip package includes a semiconductor chip, an interposer, a polymer adhesive supporting layer, a redistribution layer and a packaging layer. The semiconductor chip has a sensor device and a conductive pad electrically connected to the sensing device, and the interposer is disposed on the semiconductor chip. The interposer has a trench and a through hole, which the trench exposes a portion of the sensing device, and the through hole exposes the conductive pad. The polymer adhesive supporting layer is interposed between the semiconductor chip and the interposer, and the redistribution layer is disposed on the interposer and in the through hole to be electrically connected to the conductive pad. The packaging layer covers the interposer and the redistribution layer, which the packaging layer has an opening exposing the trench.
Abstract:
Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
Abstract:
The invention relates to a method (1) of manufacturing a silicon-metal composite micromechanical component (51) combining DRIE and LIGA processes. The invention also relates to a micromechanical component (51) including a layer wherein one part (53) is made of silicon and another part (41) of metal so as to form a composite micromechanical component (51). The invention concerns the field of timepiece movements.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
A wafer structure includes a first wafer stack and a first bonding layer disposed on the first wafer stack. The wafer structure further includes a second wafer stack that includes a first surface and a second surface opposing the first surface. A second bonding layer is disposed on the second surface and is in contact with the first bonding layer. The second wafer stack comprises through-silicon-vias (TSVs) that extend from the first surface to the second bonding layer. A seed layer is disposed on the first surface and is in contact with the TSVs.
Abstract:
A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
This invention disclosed a method to strengthen structure and enhance sensitivity for CMOS-MEMS micro-machined devices which include micro-motion sensor, micro-actuator and RF switch. The steps of the said method contain defining deposited region by metal and passivation layer, forming a cavity for depositing metal structure by lithography process, depositing metal structure on the top metal layer of micromachined structure by Electroless plating, polishing process and etching process. The method aims at strengthening structures and minimizing CMOS-MEMS device size. Furthermore, this method can also be applied to inertia sensors such as accelerometer or gyroscope, which can enhance sensitivity and capacitive value, and deal with curl issues for suspended CMOS-MEMS devices.
Abstract:
Molded structures, methods of and apparatus for producing the molded structures are provided. At least a portion of the surface features for the molds are formed from multilayer electrochemically fabricated structures (e.g. fabricated by the EFAB™ formation process), and typically contain features having resolutions within the 1 to 100 μm range. The layered structure is combined with other mold components, as necessary, and a molding material is injected into the mold and hardened. The layered structure is removed (e.g. by etching) along with any other mold components to yield the molded article. In some embodiments portions of the layered structure remain in the molded article and in other embodiments an additional molding material is added after a partial or complete removal of the layered structure.