Abstract:
Methods and apparatus for adding metals such as aluminum to fused silica glass articles are disclosed. The methods and apparatus allow for controlled, low level addition of metals into fused silica glass articles. The fused silica glass articles containing added aluminum exhibit improved internal transmission and decreased absorption change when irradiated with a laser.
Abstract:
An optical member made of silica glass manufactured by the direct method where a material gas comprising an organosilicon compound is allowed to react in an oxidizing flame, said optical member having a 2×1014 molecules/cm3 or less concentration of formyl radical generated by X-ray irradiation whose dose is 0.01 Mrad or more and 1 Mrad or less.
Abstract translation:通过直接法制造的由石英玻璃制成的光学构件,其中包含有机硅化合物的材料气体在氧化火焰中反应,所述光学构件具有2×10 14分子/ cm 3或更低浓度的甲酰基 其剂量为0.01Mrad以上且1Mrad以下的X射线照射产生。
Abstract:
A silica optical fiber is provided, which contains a pure-silica core and a cladding layer formed on the pure-silica core, wherein the pure-silica core contains a C element and has a content of elements belonging to the third period-the seventh period of the periodic table, except Si element that constitutes the quartz structure, of not more than 100 ppm. The present invention can provide a silica optical fiber superior in the resistance to high energy electromagnetic waves such as UV light and &ggr;-rays.
Abstract:
Highly durable silica glass containing 0.01% to 2% by weight of at least one element selected from magnesium, calcium, strontium, barium, yttrium, hafnium and zirconium. The silica glass is produced by melting a powdery material comprising a finely divided silica powder and a finely divided zirconium-containing substance by oxyhydrogen flame or plasma arc to form an accumulated molten material layer, and extending the molten material layer outwardly in radial directions.
Abstract:
A method for making silica includes delivering a silica precursor comprising a perfluorinated group to a conversion site and passing the silica precursor through a conversion flame to produce silica soot.
Abstract:
A method is provided for manufacturing a synthetic silica glass. The method includes the steps of maintaining a silica glass member, which is formed using a flame hydrolysis method and having an OH group concentration of about 500 ppm to about 1300 ppm, at a predetermined holding temperature for a predetermined period of time so as to substantially relax the structure of the silica glass member. The method further includes the step of subsequently cooling the silica glass member to a first predetermined temperature at a cooling rate of about 10 K/hour or less, and thereafter, cooling the silica glass member to a second predetermined temperature at a cooling rate of about 1 K/hour or less. The method further includes the step of further cooling the silica glass member to a third predetermined temperature at a cooling rate of about 10 K/hour or less.
Abstract:
A method is provided for manufacturing a silica glass that is substantially free of chlorine. The method includes the step of separately expelling a silicon tetrafluoride gas, a combustion gas, and a combustible gas from a burner made of silica glass, the flow velocity of the silicon tetrafluoride gas being within the range of about 9 slm/cm2 to about 20 slm/cm2. The method further includes the steps of producing minute silica glass particles by reacting the silicon tetrafluoride gas with water produced by a reaction of the combustion gas with the combustible gas, depositing the minute silica glass particles on a target, and producing the silica glass by fusing and vitrifying the minute silica glass particles deposited on the target.
Abstract:
Glass powders and methods for producing glass powders. The powders preferably have a small particle size, narrow size distribution and a spherical morphology. The method includes forming the particles by a spray pyrolysis technique. The invention also includes novel devices and products formed from the glass powders.
Abstract:
High purity direct deposit vitrified silicon oxyfluoride glass suitable for use as a photomask substrates for photolithography applications in the VUV wavelength region below 190 nm is disclosed. The inventive direct deposit vitrified silicon oxyfluoride glass is transmissive at wavelengths around 157 nm, making it particularly useful as a photomask substrate at the 157 nm wavelength region. The inventive photomask substrate is a dry direct deposit vitrified silicon oxyfluoride glass which exhibits very high transmittance in the vacuum ultraviolet (VUV) wavelength region while maintaining the excellent thermal and physical properties generally associated with high purity fused silica. In addition to containing fluorine and having little or no OH content, the inventive direct deposit vitrified silicon oxyfluoride glass suitable for use as a photomask substrate at 157 nm is also characterized by having less than 1null1017 molecules/cm3 of molecular hydrogen and low chlorine levels.
Abstract translation:公开了适用于在190nm以下的VUV波长区域中用于光刻应用的光掩模基板的高纯度直接沉积玻璃化硅氧氟化物玻璃。 本发明的直接沉积玻璃化硅氧氟化物玻璃在157nm波长附近是透射的,使其特别适用于157nm波长区域的光掩模衬底。 本发明的光掩模基材是在真空紫外(VUV)波长区域中显示非常高的透射率的干直接沉积玻璃化硅氧氟化物玻璃,同时保持通常与高纯度熔融二氧化硅相关的优异的热和物理性能。 除了含氟且具有很少或不含OH含量之外,本发明的适用于157nm的光掩模衬底的直接沉积玻璃化氟氧化硅玻璃的特征还在于具有小于1×10 17分子/ cm 3的分子氢和低氯水平。
Abstract:
A process of manufacturing a silica glass article comprising the steps of: (1) irradiating a silica glass article with electromagnetic waves to generate defects therein; and (2) immersing the thus irradiated silica glass article in an atmosphere comprising a hydrogen gas, thereby providing the resulting silica glass article with a characteristic that is effective for preventing it substantially from increasing its absorption within an ultraviolet region due to ultraviolet ray irradiation. Also disclosed are a silica glass article or a glass fiber produced according to the manufacturing process.