Abstract:
The invention relates to a method of and a device for measuring optical radiation. In the method, the intensity (2) of a radiation coming from an object (1) to be measured and to be lighted by collimated radiation is measured at several wavelength by focusing the radiation by an optical means (4) and a mirror means (6) on a detector group (3) comprising several detector elements (3a to 3d). The radiation coming from the object (1) to be measured is directed by the optical means (4) and the planar mirror means (6) in such a way that, by rotating the mirror means (6) tilted with respect to its axis (5) round this axis (5) and by keeping the radiation on the surface of the same planar mirror means (6), the focus (F) of radiation is moved in a detector plane (D) along a regular uninterrupted path (R) alternatingly over each detector element (3a to 3d) positioned substantially in the same plane and excited at a different wavelength.
Abstract:
An X-ray analysis apparatus comprises a central control device which includes means for recording simulated beam paths in the apparatus, thus enabling correction for the effects of radiation-optical deviations as well as of other deviations in the apparatus or a specimen on detection signals. Such a correction facility allows for construction of an apparatus having a large number of freedoms and hence a universal application.
Abstract:
Es wird ein Verfahren zur Elementanalyse mit laserinduzierter Emmissionsspektralanalyse einer Metallschmelze an ihrer Oberfläche in einer Bohrung an einem Schmelzgefäß (1) angegeben. Die Bohrung ist mit einem Rohr (4) versehen, das außen mit einem Quarzfenster (6) verschlossen ist. Über einen seitlichen Stutzen (5) am Rohr strömt ein inertes Gas mit einer Temperatur von mehr als 300 °C in die Bohrung. Das Rohr (4) ist mit einem Gehäuse (7) verbunden, an das über einen Lichtwellenleiter (14) ein Spektrometer (15) gekoppelt ist. Das Laserlicht, eines im Gehäuse befindlichen Lasers (8) wird über justierbare Linsen (9) und Spiegel (10) auf die Metalloberfläche (12) fokussiert und erzeugt dort ein Plasma (11). Das von der Metalloberfläche emittierte Plasmalicht wird mit einem justierbaren Linsensystem (13a, 13b) in den Lichtwellenleiter (14) gekoppelt und zum Spektrometer (15) geleitet.
Abstract:
Système de mise en images par fluorescence comportant une source lumineuse, de préférence un laser à impulsions (1), lequel irradie un objet, éventuellement par l'intermédiaire d'autres composants optiques (2, 3, 5), de manière à produire un rayonnement par fluorescence dans l'objet. Ce rayonnement met en image l'objet sur un plan détecteur (11). Selon l'invention, il est prévu un système diviseur optique du faisceau (6), de sorte que l'objet fluorescent est reproduit sous la forme d'au moins trois, et de préférence quatre images séparées et mutuellement adjacentes. Un filtre choisi est placé dans chacune des trajectoires de ces faisceaux lumineux partiels. Le plan détecteur possède plusieurs détecteurs de points d'image dont chacun produit un signal électrique respectif, de sorte que l'on obtient pour chaque point image au moins trois, et de préférence quatre signaux d'intensité enregistrés pour une bande de fréquence respective déterminée par des filtres respectifs. Ces signaux sont traités mathématiquement pour obtenir une valeur pondérée du signal, laquelle peut être sans dimension. Ce valeurs pondérées de points d'image sont reproduites par exemple, sur un écran de visualisation (13), lequel permet une reproduction par fluorescence contractée et exempte de perturbations quant aux empreintes spectrales. Un exemple d'application de l'invention est la détection de cellules cancéreuses marquées par fluorescence à l'aide d'un dérivé d'hématophyrine.
Abstract:
A measurement system (100) of photoluminescence properties of a sample (1), comprising: a radiation source module (2) configured to generate a first radiation; an excitation optical path (3) coupled to the radiation source module (2); a support (200) structured to support a sample (1) to be optically coupled to excitation optical path (3) and adapted to provide a photoluminescence radiation (RF); a collection path (4) coupled to the sample (1) and configured to propagate said photoluminescence radiation (RF); an analysis device (5) configured to receive the photoluminescence radiation and provide data/information on photoluminescence properties of sample (1). At least one path between the excitation path (3) and the collection path (4) comprises a respective adjustable birefringent common-path interferometer module (6) configured to produce first and second radiations adapted to interfere with each other.
Abstract:
The present invention concerns an apparatus for spectral and intensity profile characterization comprising: a diffractive element; a beam block (3) attached to the diffractive element, the beam block (3) being positioned so as to block the passage of the direct incoming beam (1) which is not incident on the diffractive element; a device for translation of the beam block (3) and the diffractive element; reflective element (4); fixed detector (5) positioned on the axis of the incoming beam (1). The invention also concerns use and a method thereof. Such a compact system provides application in the field of spectrometry and diagnostics of the beam intensity profile, especially in the area of XUV and soft X-rays.
Abstract:
Methods are provided to identify spatially and spectrally multiplexed probes in a biological environment. Such probes are identified by the ordering and color of fluorophores of the probes. The devices and methods provided facilitate determination of the locations and colors of such fluorophores, such that a probe can be identified. In some embodiments, probes are identified by applying light from a target environment to a spatial light modulator that can be used to control the direction and magnitude of chromatic dispersion of the detected light; multiple images of the target, corresponding to multiple different spatial light modulator settings, can be deconvolved and used to determine the colors and locations of fluorophores. In some embodiments, light from a region of the target can be simultaneously imaged spatially and spectrally. Correlations between the spatial and spectral images over time can be used to determine the color of fluorophores in the target.
Abstract:
A spectroscopy system (10) for analyzing in-elastic scattered electromagnetic radiation from an object being irradiated by electromagnetic radiation is provided. The system comprises a tunable lens assembly (13) having a tunable lens provided in the beam path between an electromagnetic radiation source (11) and the object (0) and arranged to project a beam of electromagnetic radiation emitted from the electromagnetic radiation source onto an area of the object and receive and collimate the in-elastic scattered electromagnetic radiation from the object. Based on electromagnetic radiation detected by at least a first detector (121) a control unit (14) is capable making a decision to change the operational settings of the tunable lens.
Abstract:
Disclosed herein are systems and methods for performing angled confocal spectroscopy. Angled confocal spectroscopy permits sensitive, non-invasive investigation of numerous analytes in a wide variety of samples, including tissues and bodily fluids. The methods and systems disclosed herein can be used to measure spectroscopic signatures of analytes within well-defined and very small regions of samples, while at the same time achieving superior rejection of signal contributions from analytes within the sample that do not fall within a volume of interest. Accordingly, measurements can be performed at comparatively high signal-to-noise ratios, and can provide information such as concentrations and distributions of sample analytes at high spatial resolution. By using cylindrically-focused illumination light, samples can be excited by a "sheet" of light, allowing spatial signal averaging and enhancing the stability and reproducibility of the measurements.