Abstract:
A method for developing a calibration for a near infrared reflectance spectrophotometer to predict the particle score of an ingredient, the method comprising (a) sorting a plurality of plant matter samples by size by passing such samples through a screen and subsequently calculating a particle score for the samples based on the number of samples passing through the screen, (b) measuring the absorbance or reflectance of the plurality of plant matter samples using the spectrophotometer, and (c) correlating the particle score from step (a) with the measured absorbance or reflectance from step (b),
Abstract:
The invention generally provides methods for improving the dynamic range of an absorbance detector and absorbance detectors having improved dynamic range. In an exemplary embodiment, the method includes receiving calibration data for a plurality of samples, the calibration data comprising an absorbance for a concentration of each of the samples, calculating a contribution of stray light to the calibration data, and correcting subsequent data by removing the contribution of stray light.
Abstract:
The invention provides for a method of analyzing a biological sample (404) using an analyzer (400) and an assay (408). The method comprises providing (100) the assay for producing the signal. The assay has two or more predetermined number of components. Each of predetermined number of components has a distinct relation between the intensive property and the signal. The method further comprises providing (102, 200) calibration samples with known values (430) for the intensive property and measuring (104, 202) a calibration signal (432) for each of the calibration samples. The method further comprises determining (106, 206) a calibration (434) by fitting a calibration function to the calibration signal for each of the calibration samples and the known values for the intensive property. The calibration function is equivalent to a constant plus an exponential decay term for each of the predetermined number of components. The method further comprises measuring (108, 208) the signal (436) of the biological sample using the analyzer and the assay and calculating (110, 210) the intensive property using the calibration.
Abstract:
A focus height sensor in an optical system for inspection of semiconductor devices includes a sensor beam source that emits a beam of electromagnetic radiation. A reflector receives the beam of electromagnetic radiation from the sensor beam source and directs the beam toward a surface of a semiconductor device positioned within a field of view of the optical system. The reflector is positioned to receive at least a portion of the beam back from the surface of the semiconductor device to direct the returned beam to a sensor. The sensor receives the returned beam and outputs a signal correlating to a position of the surface within the field of view along an optical axis of the optical system.
Abstract:
A detector arrangement for a blood culture bottle incorporating a colorimetric sensor which is subject to change of color due to change in pH or C0 2 of a sample medium within the blood culture bottle. The detector arrangement includes a sensor LED illuminating the colorimetric sensor, a reference LED illuminating the colorimetric sensor, a control circuit for selectively and alternately activating the sensor LED and the reference LED, and a photodetector. The photodetector measures reflectance from the colorimetric sensor during the selective and alternating illumination of the colorimetric sensor with the sensor LED and the reference LED and generates intensity signals. The reference LED is selected to have a peak wavelength of illumination such that the intensity signals of the photodetector from illumination by the reference LED are not substantially affected by changes in the color of the colorimetric sensor.
Abstract:
In various embodiments, the present disclosure describes methods and systems for detecting microbes in a sample. The methods are generally applicable to quantifying the number of target bacteria in a sample counted from a detection region of a flow cytometer histogram. The detection methods can be employed in the presence of other microorganisms and other non-target microbe components to selectively quantify the amount of a target microbe. The methods are advantageous over those presently existing for testing of foodstuffs and diagnostic evaluation in their speed, accuracy and ease of use. Various swab collection devices and kits useful for practicing the present disclosure are also described herein.
Abstract:
A system for the qualitative analysis of an agricultural product comprises a scanning cell (1) for the transmittance of a sample of an agricultural product, means for the emission of a quantity of light (6) and means for the detection of a quantity of light (5,50), at least one optical sensor (9,90) and a remote control unit (10) connected to the above mentioned at least one optical sensor (9,90). The system is characterized by the fact that said means for the detection of a quantity of light (5) are mounted in a mobile manner on said cell (1) and arranged frontally to said means of emission of a quantity of light (6), in such a way that the distance between said means of emission (6) and said means of detection (5) can be altered.
Abstract:
The invention provides a method for standardising an infrared spectrometer based on spectral patterns of constituents of atmospheric air naturally occurring in the spectrometer. The invention also provides a spectrometer applying the method. The method selects a spectral pattern in a recorded spectrum and determines a wavelength dependent position value for a feature, such as the centre of the pattern. This value is compared to a reference value that may be obtained from a spectrum recorded by a master instrument, and a standardisation formula can be determined. The absorption peaks from CO 2 ( g )around 2350 cm -1 are preferred as the selected pattern. The method renders the use of reference samples unnecessary and allows for the standardisation to be performed simultaneously with the recording of a spectrum of a sample of interest.
Abstract:
A method and apparatus are described that permit an analyte concentration to be estimated from a measurement in the presence of compounds that interfere with the measurement. The method reduces the error in the analyte concentration in the presence of interferents. The method includes the use of a set of measurements obtained for a large population having a range of know analyte and interfering compound concentrations. From a sample measurement, which may or may not be one of the population, likely present interferents are identified, and a calibration vector is calculated.