Abstract:
An improved method of launching and retrieving a UAV (Unmanned Aerial Vehicle) (10) is disclosed. The preferred method of launch involves carrying the UAV (10) up to altitude using a parasail (8) similar to that used to carry tourists aloft. The UAV is dropped and picks up enough airspeed in the dive to perform a pull-up into level controlled flight. The preferred method of recovery is for the UAV to fly into and latch onto the parasail tow line (4) or cables hanging off the tow line and then be winched back down to the boat (2).
Abstract:
VTOL micro-aircraft comprising a first and a second ducted rotor (1, 2) mutually aligned and distanced according to a common axis and whose propellers (4, 6) are driven in rotation in mutually opposite directions. Between the two ducted rotors (1, 2) are positioned a fuselage (3) and a wing system (13) formed by wing profiles (10, 11) forming an X or an H configuration and provided with control flaps (16).
Abstract:
A weather modification system that includes both systems and vehicles capable of modifying the weather. The systems may include devices capable of utilizing compositions to create dispersants that can modify weather. The system is capable of autonomous weather modification where the vehicles may operate for long periods of time in the air and may be directed by a control station. The vehicles may include an airplane, a UAV, a balloon, a satellite, an airship, such as a lenticular airship, a helicopter or a lighter than air vehicle. The vehicles are capable of multiple functions including weather modification, weather monitoring, and coordination between different vehicles.
Abstract:
A multi-copter lift body aircraft has a push or pull propeller (26) and a lift body (70) that has a first airfoil shape (71) on a front to rear cross-section and a second airfoil shape (72) on a left to right cross-section. The lift body (70) is made from a top shell and a bottom shell. The lift body (70) has a nose (22) and a tail (25). Multi-copter propellers (60) are attached to the lift body. The multi-copter propellers (60) provide a lift at low speeds and the lift body (70) provides a lift at high speeds. Avionics (68) can be stored in a hollow cavity of the lift body. The avionics (68) may include a control circuit (65), batteries (66), and a radio receiver. The multi-copter has a lift body (70) made from an upper shell (36, 38) and a lower shell (37, 39). The lift body (70) has an optimum attack angle (91) at a cruising speed, and the lift body provides a combined lift mode.
Abstract:
L'invention concerne un procédé de capture d'une vidéo à l'aide d'une caméra embarquée sur un drone (14) à voilure fixe, la caméra comprenant un capteur d'image(s) (28), le drone (14) à voilure fixe comprenant une centrale inertielle (56) configurée pour mesurer l'angle de roulis, de l'angle de tangage et/ou l'angle de lacet du drone à voilure fixe. Ce procédé comprend l'obtention (106) d'image(s) correspondant à une zone du capteur de dimensions réduites par rapport à celles du capteur et associée à un repère de prise de vue, la position de la zone étant déterminée (108) à partir de l'orientation du repère de prise de vue obtenue (110) en fonction de l'angle de roulis, de l'angle de tangage et/ou de l'angle de lacet du drone à voilure fixe.
Abstract:
In some embodiments, an aircraft (10) includes a flying frame (12) having an airframe (26), a propulsion system (34) attached to the airframe (26) and a flight control system (68) operably associated with the propulsion system (34) wherein, the flying frame (12) has a vertical takeoff and landing mode and a forward flight mode. A pod assembly (70) is selectively attachable to the flying frame (12) such that the flying frame (12) is rotatable about the pod assembly (70) wherein, the pod assembly (70) remains in a generally horizontal attitude during vertical takeoff and landing, forward flight and transitions therebetween.
Abstract:
A site management system includes an unmanned airplane (13) being switchable between an airplane mode for high speed flight and a VTOL mode for low speed flight, a working vehicle (12) working in a civil construction site (CS), a shape detection sensor (44) provided in the unmanned airplane (13) to detect a shape of the civil construction site (CS), and an external control apparatus (11) that controls flight of the unmanned airplane (13), driving of the working vehicle (12), and driving of the shape detection sensor (44). The external control apparatus (11) moves the unmanned airplane (12) to an observation area (Ai) by performing the high speed flight. Further, the external control apparatus (11) detects a shape of the observation area by driving the shape detection sensor (44) while performing the high speed flight or by driving the shape detection sensor (44) while performing low speed flight by switching from the airplane mode to the VTOL mode.
Abstract:
L'invention concerne un procédé de contrôle dynamique d'attitude d'un drone à voilure tournante comprenant un corps de drone (12) comprenant une carte électronique contrôlant le pilotage du drone, quatre bras de liaison (16), chaque bras comprenant fixé solidairement un bloc propulseur (14). Les bras de liaison (16) forment des ailes portantes. Le drone vole en utilisant la portance des ailes, l'attitude du drone est contrôlée par l'envoi de commandes différenciées à un ou plusieurs desdits blocs propulseurs de manière à produire une rotation du drone autour de l'axe de roulis et/ou de tangage et/ou de lacet du drone depuis une position angulaire courante à une position angulaire finale, ces axes étant définis dans le repère du drone. L'invention concerne également un drone à voilure tournante (10) apte à mettre en oeuvre le procédé de contrôle dynamique.
Abstract:
A method of launching a powered unmanned aerial vehicle, the method comprising lifting the vehicle by attachment to a lighter-than-air carrier from a substantially ground-level location to an elevated altitude, wherein the vehicle is prevented from entering its flight mode during ascent, causing the vehicle to detach from the carrier while the velocity of the vehicle relative to the carrier is substantially zero, the vehicle thereafter decreasing in altitude as it accelerates to a velocity where it is capable of preventing any further descent and can begin independent sustained flight.