Abstract:
A simple, inexpensive, drillable, reduced CTE laminate and circuitized structures comprising the reduced CTE laminate, is provided. The reduced CTE laminate comprises: from about 40% to 75%, preferably from about 55% to 65%, by weight resin; from about 0.05% to 0.3%, preferably from about 0.08% to 0.10%, by weight curing agent; from about 25% to 60%, preferably from about 30% to 40%, by weight, woven cloth; from about 1% to 15%, preferably from about 5% to 10%, by volume, non-woven quartz mat. The present invention also generally relates to a method for reducing the CTE of circuitized structures, and to methods for making reduced CTE laminate and circuitized structures comprising reduced CTE laminate. The method for making reduced CTE laminate and laminate structures comprises the following steps: providing non-woven quartz mat; providing a prepreg, preferably not B-stage cured to not more than about 40%, preferably not more than 30% of full cure; sandwiching the non-woven quartz mat between two layers of prepreg, and reflowing the resin of the prepreg into the quartz mat. Optionally, the reduced CTE laminate is sandwiched between two layers of metal, preferably copper.
Abstract:
A printed circuit board is made from at least one non-woven sheet or web layer comprising at least 50% by weight acrylic fibers, with any balance substantially electrically non-conductive fibers, filler, and binder. The sheet or web is preferably made by the foam process, and may contain 60-80% straight polyacrylonitrile fibers and 40-20% fibrillated (pulp) ones. The web or sheet is preferably compressed by thermal calendering so that it has a density of about 0.1-1 grams per cubic centimeter; and the web or sheet may have a basis weight of between about 20-120 grams per square meter. The web or sheet may also have a 1-40% of substantially electrically non-conductive organic or inorganic binder, or may be substantially binder free. A printed circuit board made using the layers of these non-woven webs or sheets is otherwise conventional, including a pre-preg material, electrically conductive circuit elements, and electronics, and has improved properties compared to woven glass and non-woven aramid products, including improved fiber consolidation, easy board construction, and improved MD/CD ratio and stability.
Abstract:
An electrical substrate material is presented comprising a resin matrix which includes a thermosetting polybutadiene or polyisoprene resin, an ethylene propylene rubber, and optionally a thermoplastic unsaturated butadiene- or isoprene-containing polymer; a particulate filler, a flame retardant additive, a curing agent, and a woven or unwoven fabric. The presence of the ethylene propylene rubber enhances the heat age properties of the substrate material, particularly the dielectric strength and the mechanical properties, while other electrical, chemical, and mechanical properties of the material are not adversely effected.
Abstract:
Disclosed is a printed circuit board including a first layer having a first stacked region, a second stacked region spaced apart from the first stacked region by a selected distance, and a flexible connection part disposed between the first and second stacked regions, and extending to the first stacked region and the second stacked region with selected width and length, the flexible connection part having a conductive pattern layer for signal transmission between the first stacked region and the second stacked region; a pair of second layers disposed apart on an upper surface of each of the first and second stacked regions of the first layer and having a first signal pattern layer on both surfaces of each of the second layers, wherein the first signal pattern layer of the second layer is electrically connected to the conductive pattern of the flexible connection part, a pair of upper metal layers disposed on respective upper surfaces of the second layer, the upper metal layer interposing a first insulating adhesive between the upper metal layer and the second layer, a pair of third layers disposed apart on a lower surface of each of the first and second stacked regions of the first layer and having a second signal pattern layer on both surfaces of each of the third layers, and a pair of lower metal layers disposed on respective lower surfaces of the third layers, the lower metal layer interposing a second insulating adhesive between the lower metal layer and the third layer.
Abstract:
A non-woven fabric comprising a principal component of para-aramid fiber chops bonded with each other by a binder, the para-aramid fiber chops having a mixture of (a) poly-p-phenylene-3,4null-diphenylether-terephthalamide fibers and (b) poly-p-phenylene-terephthalamide fibers and having a blend ratio by weight of (a)/(b)null10/90null90/10 and preferably (a)/(b)null30/70null70/30.
Abstract:
It includes two outer sheets of continuous-strand fiberglass fabric and a core of non-woven fiberglass formed by sheets of fiberglass paper, all sheets being impregnated with epoxy resin, and presenting at least one sheet of conducting material, on one or both outer sides; it is characterized in that it incorporates in the non-woven fiberglass core at least one intermediate sheet of fiberglass fabric impregnated with resin.It allows manufacturing of reliable printed circuits, even when using surface-mounted components, while at the same time its cost is relatively low; it is particularly suitable for the field of consumer and semi-professional electronics.
Abstract:
A back-up board for use in drilling holes in printed circuit boards is disclosed. The inventive back-up board comprises outer layers of paper impregnated with a high-density resin, and a core consisting of alternating layers of paper impregnated with low-density resin and dry paper.
Abstract:
A thermostable substrate for flexible circuit boards having excellent flame-resistance, handling, and storage qualities may be produced by treating a substrate of a nonwoven fabric or paper with a flame-resistant, halogen-free polymeric composition. The polymeric composition comprises an aqueous mixture of a copolymerizate of acrylic acid esters and styrene, and an aminoplastic or phenoplastic precondensate to which a mixture of fine-particle red phosphorus and fine-particle ammonium polyphosphate is also added.
Abstract:
A continuous process for producing reinforced resin laminates comprising the steps of impregnating a fibrous substrate with a liquid resin which is free of volatile solvent and is capable of curing without generating liquid and gaseous byproducts, laminating a plurality of the resin-impregnated substrates into a unitary member, sandwiching the laminate between a pair of covering sheets, and curing the laminate between said pair of covering sheets without applying appreciable pressure. The improvement comprises adjusting the final resin content in said resin impregnated substrate at 10 to 90% by weight based on the total weight of said impregnated substrate.
Abstract:
A flame retardant electrical laminate prepared by impregnating a base material with a halogen-containing unsaturated polyester resin which is prepared by dissolving a halogen-containing unsaturated polyester into a polymerizable monomer; and then curing the halogen-containing unsaturated polyester resin; wherein the halogen-containing unsaturated polyester has a molecular weight per 1 mole of unsaturated group of 350 to 1,000, and the cured halogen-containing unsaturated polyester resin has a glass transition temperature of 30.degree. to 90.degree. C.Such electrical laminates not only have excellent flame redardancy but also excellent puching quality at wide temperature range including room temperature.