Abstract:
A system for controlling a purely photonic network comprising: at least one digital computing device configured for: storing instructions which, when executed by one or more processors, cause the instructions to control a photonic network, the photonic network comprising purely photonic elements that require no electrical-to-optical or optical-to-electrical conversion between a network input port and a network output port, wherein the digital computing device stores: 1) relationship information that describes the relationships between a plurality of network elements in the photonic network; and 2) configuration information that describes the current state of each of the plurality of network elements; receiving a path generation request that includes a first port identifier and a second port identifier, wherein the first port identifier represents an input port and the second port identifier represents a first output port; based at least in part on the relationship information and the configuration information, generating candidate paths that begin at the input port and end at at least the first output port.
Abstract:
Apparatus and methods are provided for driving a two-axis MEMS mirror using three non-contact actuation elements or electrodes. A differential bi--directional mirror control uses unipolar drive voltages biased at a suitable value. Transformation functions map two-axis tip-tilt commands to three actuation drive signals for selected electrode orientations and sizes.
Abstract:
In a gimbaled micromachined micromirror array optimized for parallel-plate electrostatic operation, longitudinal-type gimbal hinge elements are provided in which a plurality of torsional longitudinal hinge elements are arranged in an array parallel to the axis of rotation and which are linked together by rigid lateral brace sections. In primary embodiment the hinge elements are arranged in a double gimbal configuration. Specific embodiments of the hinge elements are simple longitudinal, compound longitudinal, stacked simple longitudinal, and stacked compound longitudinal. The longitudinal hinges may be used with various types of mirrors including circular or rectilinear, recessed or nonrecessed, where the hinges are connected in either a symmetric or asymmetric configuration relative to one another, as hereinafter illustrated by way of a subset of examples. A preferred embodiment of a mirror structure suitable for an array structure according to the invention is a nonstacked compound longitudinal hinge symmetrically connected to a circular nonrecessed electrostatically-actuatable parallel plate mirror within a substantially circular ring hinged in substantially the same way to form a double gimbaled structure.
Abstract:
Methods and apparatus are provided for detection and control of multiple-axi s active alignment for a free-space-coupled single-mode fiber-optic transmissi on system that automatically optimizes the coupling through the system. In a specific embodiment, a measurement of coupled power is made and error signal s are used to control actuation via four axes of beam steering element to null four generally orthogonal alignment errors of the beam between the input (12 ) and output fibers (14). The four alignment errors are detected using a synchronous-detection approach. A feedback control system (100) nulls the fo ur errors.
Abstract:
A method for generating optical paths in a photonic network is provided. A model of a photonic network is used to store relationship information that describes the relationships between photonic network elements, as well as configuration information about the elements of the photonic network. A path manager receives a request to generate one or more paths based on an input port and one or more output ports. Using the information stored in the photonic network model, the path manager generates one or more candidate paths.
Abstract:
In an electrostatically controlled deflection apparatus, such as a MEMS array having cavities formed around electrodes and which is mounted directly on a dielectric or controllably resistive substrate in which are embedded electrostatic actuation electrodes disposed in alignment with the individual MEMS elements, a mechanism is provided to mitigate the effects of uncontrolled dielectric surface potentials between the MEMS elements and the electrostatic actuation electrodes, the mechanism being raised electrodes relative to the dielectric or controllably resistive surface of the substrate. The aspect ratio of the gaps between elements (element height to element separation ratio) is at least 0.1 and preferably at least 0.5 and preferably between 0.75 and 2.0 with a typical choice of about 1.0, assuming a surface fill factor of 50% or greater. Higher aspect ratios at these fill factors are believed not to provide more than marginal improvement.
Abstract:
A MEMS device having a fixed element and a movable element wherein one or the other of the fixed element and the movable element has at least one radially-extended stop or overdeflection limiter. A fixed overlayer plate forms an aperture. The aperture is sized to minimize vignetting and may be beveled on the margin. Overdeflection limitation occurs during deflection before the movable element can impinge on an underlying electrode. The overdeflection limiter may be conveniently placed adjacent a gimbaled hinge.
Abstract:
Methods and apparatus are provided for the closed loop attenuation of optical beam power in a multiple-axis free-space-coupled single-mode fiber-optic transmission system. In a specific embodiment involving two tip-tilt mirrors to couple optical power from an input fiber to an output fiber, the four mirror axes are actuated in such a way as to produce either a static or time-varying set of induced mirror angles that yield a desired time history of optical loss. The attenuation technique uses the DC level of the measured output power to adjust the amplitude of the induced mirror angles.
Abstract:
Method for fabricating ultrathin gaps producing ultrashort standoffs in array structures includes sandwiching a patterned device layer between a silicon standoff layer and a silicon support layer, providing that the back surfaces of the respective silicon support layer and the standoff layer are polished to a desired thickness corresponding to the desired standoff height on one side and to at least a minimum height for mechanical strength on the opposing side, as well as to a desired smoothness. Standoffs and mechanical supports are then fabricated by etching to produce voids with the dielectric oxides on both sides of the device layer serving as suitable etch stops. Thereafter, the exposed portions of the oxide layers are removed to release the pattern, and a package layer is mated with the standoff voids to produce a finished device. The standoff layer can be fabricated to counteract curvature.