Abstract:
Embodiments herein relate to systems, devices and methods for the treatment of equilibrium disorders and improving gait and balance. In an embodiment, a method of treating an equilibrium disorder is included. The method can include monitoring device wearer movement with a movement sensor, identifying a movement pattern consistent with an equilibrium disorder, estimating characteristics of the equilibrium disorder, and applying stimulation to at least one of the right ear, left ear, or brainstem of the device wearer of an ear-worn device. Other embodiments are also included herein.
Abstract:
Disclosed herein, among other things, are apparatus and methods for a high-efficiency antenna for hearing assistance device wireless communication. In various embodiments, a hearing assistance device includes a housing, a power source within the housing, and a radio circuit within the housing and electrically connected to the power source. A circular polarized spiral antenna is provided within the housing in various embodiments, the antenna configured to provide two electric field components configured to be used for wireless communications for the hearing assistance device. The device further includes a transmission line connected to a center of a spiral of the antenna and configured to electrically connect to the radio circuit, according to various embodiments.
Abstract:
Various embodiments of a hearing device and methods of operating such hearing device are disclosed. The hearing device includes a receiver and a controller. The receiver includes at least one driver to generate sound. The controller includes one or more processors operably coupled to the receiver to control sound generated by the hearing device. The controller is configured to generate sound using the receiver based on at least cloned voice data.
Abstract:
Embodiments herein relate to systems, devices and methods for managing pharmacological therapeutics and aspects of the same. In an embodiment, a hearing assistance device can include a control circuit, an electroacoustic transducer for generating sound in electrical communication with the control circuit, a power supply circuit in electrical communication with the control circuit, and a sensor package in electrical communication with the control circuit. The control circuit can be configured to evaluate a signal from at least one of the sensors of the sensor package to detect administration of a therapy or receive data indicating that administration of a therapy has taken place. The control circuit can also be configured to record an instance of a detected medication administration event along with a timestamp. Other embodiments are also included herein.
Abstract:
An ear-wearable device (100) includes a shell (102) shaped for wearing in a user's ear. The shell (102) comprises a tunnel wall (116) shaped to define a tunnel (108) that passes through the ear- wearable device (100). The ear-wearable device (100) includes a receiver coil (204) that is formed in or around the tunnel wall (116) of the tunnel (108). The receiver coil (204) is configured to inductively couple with a power coil (200) via the tunnel (108) and to inductively receive electromagnetic power from the power coil (200), and the receiver coil is configured to convert the electromagnetic power to an electrical current. The ear-wearable device (100) includes one or more electrical components (210) encased within the shell (102) and configured to receive the electrical current from the receiver coil (204).
Abstract:
A computing system wirelessly receives data from an ear-wearable device and determines, based on the data received from the ear-wearable device, a current position of the ear-wearable device. Additionally, the computing system determines, based on the current position of the ear-wearable device and data regarding a golf course, golf advice data that provides a recommendation regarding play of the golf course. Furthermore, the computing system wirelessly sends audio data to the ear-wearable device. The audio data represents soundwaves of a vocalization of the golf advice data.
Abstract:
Various embodiments of a hearing device including an image sensor are disclosed. The hearing device can include a housing, a user sensory interface connected to the housing, an image sensor connected to the housing, and an acoustic sensor connected to the housing. The device can also include a processor that is adapted to process image data from the image sensor to identify an image object, process acoustic data from the acoustic sensor, and determine a spatial location of the image object based upon at least one of the processed image data and the processed acoustic data. The processor can also be adapted to provide the spatial location to the user sensory interface, which can provide a sensory stimulus to the user that is representative of the spatial location of the image object.
Abstract:
Disclosed herein, among other things, are systems and methods for improved circuit design for hearing assistance devices. One aspect of the present subject matter includes a hearing assistance device configured to compensate for hearing losses of a user. The hearing assistance device includes a flexible circuit substrate and an integrated circuit die embedded within the flexible circuit substrate. The integrated circuit die includes a digital signal processor (DSP) die, in an embodiment. In various embodiments, the DSP die includes a DSP configured to provide processing for the hearing assistance device.
Abstract:
In various embodiments, a system is used to provide an apparatus configured to measure sound in an ear canal of a wearer's ear at a distance from a tympanic membrane of the ear. The sound is measured and received by the apparatus to produce a signal. A frequency analysis is performed on the signal to determine output as a function of the frequency and to determine the frequency of the minima (null). Further, a distance equal to a quarter wavelength of the null frequency is calculated. A correction factor associated with the quarter wavelength is retrieved and applied to the output to generate a corrected output. An estimated sound pressure level at the tympanic membrane from the corrected output is produced.
Abstract:
Systems and methods are provided to wirelessly communicate with a wireless communication protocol. One aspect of the present subject matter relates to a method performed by a hearing instrument for a user. According to various embodiments, local sound is converted into a processed acoustic signal for the user of the hearing instrument, and wireless communications within a wireless network that includes the hearing instrument is controlled using a wireless communications protocol. The wireless communications protocol includes a transmission protocol module, a link protocol module, an extended protocol module, a data protocol module, and an audio protocol module. The transmission protocol module is adapted to control transceiver operations to provide half duplex communication over a single wireless communication channel, and the link protocol module is adapted to implement a packet transmission process to account for frame collisions on the channel. Other aspects and embodiments are provided herein.