Abstract:
본 발명은 실제 잡음 환경의 특성을 반영하여 빔포밍을 수행하기 위한 장치 및 방법에 관한 것이다. 이를 위하여 본 발명은 실제 잡음 환경의 특성을 반영한 빔포밍 장치에 있어서, 적어도 하나의 마이크로폰으로 구성되고, 마이크로폰을 통해 입력되는 입력신호를 출력하는 마이크로폰 어레이와, 입력신호가 입력되면, 입력신호에 대해 각 마이크로폰 간격에 따른 코히런스들을 계산한 후, 동일거리 별로 각각 코히런스들의 평균을 계산하고, 계산된 평균 코히런스들을 필터링 한 후 출력하는 코히런스 함수 생성부, 필터링된 평균 코히런스들을 이용하여 공간필터 계수를 산출하여 출력하는 공간필터 계수 산출부와, 공간필터 계수를 이용하여 입력신호에 대한 빔포밍을 수행하여 잡음 처리된 신호를 출력하는 빔포밍 수행부를 포함하여 구성되는 것을 특징으로 한다. 빔포머, 마이크로폰 어레이, 코히런스
Abstract:
An image sensor is provided to enable two adjacent pixels to share one OG and one OD to increase a fill factor, thereby improving the optical sensitivity of the image sensor. An image sensor includes a CCL(Common Column Line) and pixels(PX). The pixels are connected to the CCL in parallel. Each of the pixels includes a photoelectric conversion area, a TG(Transfer Gate), an OG(Overflow Gate), and an OD(Overflow Drain Area). The TG is disposed between the photoelectric conversion area and the CCL. The OG is spaced from the TG with the photoelectric conversion area. The OD is positioned oppositely to the photoelectric conversion area with the OG. Two adjacent pixels share one OG and one OD. An overflow transistor(MO) discharges unnecessary photoelectric charges, which a PD(Photo Diode) can not receive at a predetermined storage capacitance, to a VDD(Voltage Drain Drain) terminal. A transfer transistor(MT) only transmits photoelectric charges to an output terminal. The MT receives a transmission gate signal. A source follower transistor(MD) and a reset transistor(MR) are connected to the CCL.
Abstract:
이미지 센서(image sensor)가 제공된다. 이미지 센서는 액티브 픽셀 센서 영역이 정의된 기판, 액티브 픽셀 센서 영역 내에 형성된 다수의 제1 도전형의 포토다이오드들, 및 액티브 픽셀 센서 영역 내에 제1 도전형의 포토다이오드들을 제외한 영역에 형성되고, 양전압과 전기적으로 연결된 제1 도전형의 제1 깊은 웰을 포함한다. 이미지 센서, 깊은 웰, 드레인, 크로스토크
Abstract:
적어도 메인 화소 어레이 영역의 전면을 노출시키는 패시베이션막을 갖는 이미지 센서들 및 그 제조방법들이 제공된다. 상기 이미지 센서들은 화소 어레이 영역 및 상기 화소 어레이 영역을 둘러싸는 주변회로 영역을 갖는 집적회로 기판을 구비한다. 상기 화소 어레이 영역 내의 상기 집적회로 기판에 복수개의 화소들이 제공된다. 상기 복수개의 화소들을 갖는 기판 상에 평평한 상부면을 갖는 층간절연막이 제공된다. 상기 층간절연막 상에 상부 패시베이션막 패턴이 배치된다. 상기 상부 패시베이션막 패턴은 상기 주변회로 영역 내의 상기 층간절연막을 덮고 상기 화소 어레이 영역 내의 상기 층간절연막을 완전히 노출시킨다. 이미지 센서, 패시베이션, 액티브 픽셀 센서
Abstract:
A voice recognition apparatus for recognizing a voice by using a microphone array and a microphone array driving method thereof are provided to mount the microphone array in an endfire type, and protrude the microphone array if a user is recognized, thereby suppressing surrounding noise through the microphone array and receiving a voice signal more accurately. A voice recognition apparatus includes a microphone array(504), a microphone array mounting unit(502), a microphone array driver(506), a beam forming unit(508), a control unit(500), and a memory unit(510). The microphone array is composed of at least one microphone, and is mounted in an endfire type to the voice recognition apparatus to receive a voice in an endfire direction. The microphone array mounting unit mounts the microphone array. The microphone array mounting unit protrudes or mounts the microphone array according to a control signal for driving the microphone array. The control unit outputs the control signal for protruding the microphone array to the microphone array mounting unit if a user is recognized.
Abstract:
An image sensor, a manufacturing method thereof, and an image sensing method are provided to suppress a crosstalk due to a random drift of charges by forming a potential barrier on a lower substrate region. A photoelectric converter(110) is formed in a semiconductor substrate(101) with a depth between 1 and 3 mum and includes a photodiode with a second conductivity type and a capping layer with a first conductivity type. The photodiode accumulates charges corresponding to an incident beam. The capping layer is formed on the photodiode. A charge detector(120) receives the accumulated charges from the photoelectric converter and converts the charges into an electrical signal. A charge transfer part(130) delivers the accumulated charges to the charge detector. A voltage application unit(Vb) applies voltages on the capping layer and a lower portion of the semiconductor substrate, such that a width of a depletion layer is adjusted. The depletion layer is formed on the photodiode.
Abstract:
A beam forming apparatus for reflecting characteristics of an actual noise environment and a method thereof are provided to effectively apply a voice interface technology used between mobile devices to an environment having a noise. A beam forming apparatus for reflecting characteristics of an actual noise environment includes a microphone array(300) and a beam forming unit(310). The microphone array is composed of at least one microphone(300-1~300-N) to output an input signal inputted through the microphone. The beam forming unit has a coherence function generation unit(312), a spatial filter coefficient calculation unit(320), and a beam forming performing unit(322). The coherence function generating unit calculates the average of coherences in accordance with the same distance after the coherences are calculated according to each microphone interval with respect to the input signal. After the coherence function generating unit filters the calculated average coherences, the coherence function generating unit outputs the filtered value. The spatial filter coefficient calculation unit calculates a spatial filter coefficient by using the filtered average coherences to output. The beam forming performing unit outputs the noise processed signals by performing the beam forming for the input signal by using the spatial filter coefficient.
Abstract:
An image sensor and a manufacturing method thereof are provided to reduce a process cost by forming a first conductive region and a second conductive region using one photo mask. A substrate(110) has light receiving elements arranged in a first direction and a second direction. A first conductive region(120) is positioned under the light receiving elements, and extends in the first direction. A second conductive region is positioned between the light receiving elements and the first conductive region. A contact(190) is connected to the first conductive region, and a conductive line is connected to the contact. The second conductive region has a first portion positioned on the first conductive region, a second portion positioned at both sides of the first conductive region, and a third portion connected to the first and the second portion.