Abstract:
PURPOSE: A method for producing a biodegradable polyester polymer in a particulate form, is provided to simplify a conventional complicated process by excluding a milling process or use of any special device, and prevent discharge of hazardous solvents to environment. CONSTITUTION: The method for producing a biodegradable polyester polymer in a particulate form comprises the steps of: charging at least one cyclic monomer into a high pressure reactor; adding an organometallic or acid catalyst and an initiator; injecting compressed gas as a solvent, selected from the group consisting of HFC-23, HFC-32, HFC-152a, HFC-143a, HFC-134a, HFC-125, HFC-227ea, HFC-236fa, HFC-245fa, HFC-254cb, SF6, HFC-4-10-mee, C-318(perfluoro cyclobutane), HCFC-22, HCFC-1416, HCFC-1426, HCFC-225ca/cb, dimethyl ether, N2O, propane, butane, a mixture thereof and a mixture further comprising CO2 and the above mixture, into the reactor; and carrying out solution polymerization.
Abstract:
The present invention relates to a method for synthesizing half-furan based copolyamide comprising at least one aliphatic diamine and at least one furan-based dicarboxylic acid in a main chain by using solid state polymerization and, more specifically, to a half-furan based copolyamide using furan-based dicarboxylic acid originated from biomass as a raw material. The present inventions is able to obtain half-furan based copolyamide with hue and molecular weight applicable to practical industrials from the furan-based dicarboxylic acid originated from biomass by manufacturing the half-furan based copolyamide according to the method of the present invention and is able to be usefully applied to environment-friendly bioplastic while being able to replace fossil fuel since thermal stability is excellent.
Abstract:
본 명세서는 기판건조장치 및 기판건조방법, 보다 상세하게는 초임계건조공정을 수행하는 장치 및 방법을 개시한다. 본 발명에 따른 기판건조방법의 일 양상은, 챔버로 회로패턴에 유기용매가 잔류하는 기판을 반입하는 단계; 상기 챔버로 유기용매를 공급하여 상기 기판이 상기 유기용매 내에 위치되는 단계; 상기 챔버로 초임계유체를 공급하여 상기 챔버 내부가 상기 초임계유체의 영역과 상기 초임계유체에 의해 팽창된 유기용매의 영역으로 분리되는 단계; 상기 초임계유체가 상기 유기용매를 치환하는 단계; 및 상기 챔버의 내부압력을 낮추어 상기 회로패턴의 손상을 방지하며 상기 기판을 회수하는 단계;를 포함한다.
Abstract:
PURPOSE: An apparatus and a method for drying a substrate are provided to dry a substrate without the damage of a circuit pattern by using a supercritical fluid. CONSTITUTION: A substrate is transferred into a drying chamber(S110). An organic solvent is supplied to the drying chamber(S120). A supercritical fluid is supplied to the drying chamber(S130). The organic solvent is discharged from the drying chamber(S120). The supercritical fluid is discharged from the drying chamber(S120). The substrate is transferred from the drying chamber(S160). [Reference numerals] (AA) Start; (BB) End; (S110) Load a substrate; (S120) Supply an organic solvent; (S130) Supply a supercritical fluid; (S140) Discharge the organic solvent; (S150) Discharge the supercritical fluid; (S160) Unload the substrate
Abstract:
PURPOSE: A method for manufacturing graphene sheets or graphene particles based on supercritical fluid is provided to mass-produce the graphene sheets or graphene particles of high quality by implementing deoxygenation with respect to graphene oxide under a supercritical fluid condition. CONSTITUTION: A method for manufacturing graphene sheets or graphene particles based on supercritical fluid includes the following: graphene oxide is dispersed in an alcohol solvent to form a graphene oxide dispersed solution; the graphene oxide dispersed solution is reduced under a supercritical condition to form graphene sheets or graphene particles; and the graphene sheets or the graphene particles are separated, washed, and dried. The graphene oxide includes at least one functional group selected from an epoxy group, a carboxylic group, a carbonyl group, and a hydroxyl group.
Abstract:
PURPOSE: A continuous producing method of a metal nanoparticle is provided to rapidly and economically produce the high purity metal nanoparticle using a continuous reactor using supercritical fluid. CONSTITUTION: A continuous producing method of a metal nanoparticle comprises the following steps: preparing a metal precursor solution by dissolving a metal precursor in alcohol; producing the metal nanoparticle by continuously inserting the metal precursor solution into a reactor in the supercritical condition; cooling the obtained solution from the previous step; and separating and collecting the metal nanoparticle from the solution. The metal precursor is a compound or salt of a metal selected from Cu, Ni, Ag, Au, Ru, Rh, Pd, or Pt.
Abstract:
본 발명은 탄화수소와 이산화탄소의 내부개질반응(Internal Reforming)용 고체산화물 연료전지에 관한 것으로서, 더욱 상세하게는 고체 산화물 전해질(YSZ)의 한쪽 면에 공기극(La 0.8 Sr 0.2 MnO 3 )이 부착되어 있고, 다른 한쪽 면에는 Ni-YSZ계 또는 페롭스카이트계 금속 산화물의 촉매전극(anode)이 부착되어 있는 고체산화물 연료전지로서, 전기화학적 전환반응시스템에 적용되어서는 상기 촉매전극(anode) 내부에서 탄화수소와 이산화탄소의 내부개질반응이 진행되고 동시에 전기화학적 전환반응에 의해 합성가스(syngas)와 전기에너지(electricity)를 동시에 생성시키게 되며, 특히, 탄소침적 현상이 억제되어 탄소침적에 의한 촉매의 비활성화 및 고에너지 소모의 문제점을 동시에 해결할 수 있는 장점을 가지고 있다. SOFC, 촉매전극, 공기극, 고체산화물 전해질, 합성가스, 전기에너지, 이산화탄소, 탄화수소, 내부개질반응, 전기화학적 전환반응시스템