Abstract:
A method for fabricating a nano wire device using nano imprinting lithography is provided to reduce an interval of fabrication time of a nano wire device by forming a pattern only once. An insulation layer(20) is formed on a substrate(10). A nano wire solution including a nano wire(60) is deposited on the insulation layer wherein a plurality of nano wires and an organic solvent can be mixed in the nano wire solution. Photoresist is formed on the resultant structure. The photoresist is stamped by using a nano imprinting stamp having a pattern of a nano size. A metal layer for a metal electrode is deposited on the stamped photoresist. The photoresist remaining on the insulation layer is removed by a lift-off process.
Abstract:
A method for fabricating a nano-imprint mold is provided to manufacture a quartz NIL(Nano-Imprint Lithography) mold by using a mold such as a silicon substrate. An E-beam resist is coated on a substrate and an E-beam resist pattern is formed on the first substrate by performing an E-beam lithography process(S200). A photoresist pattern is formed on the first substrate by performing a photo-lithography process(S300). A pattern is formed on the first substrate by using the E-beam resist pattern and the photoresist pattern(S400). A NIL mold is formed by printing the pattern of the first substrate on a second substrate for mold(S500,S600).
Abstract:
The present invention relates to a core-shell nanoparticle, a manufacturing method thereof, and a gas sensor using the same and, more specifically, to a core-shell nanoparticle comprising: a core consisting of a first metal oxide; and a shell consisting of a second metal oxide, wherein the first metal oxide and the second metal oxide have different oxidation state and are the oxides of same metal, a manufacturing method of the core-shell nanoparticle, and a gas sensor using the same. The present invention is capable of providing the gas sensor with excellent sensitivity and stability by using the core-shell nanoparticle.
Abstract:
본 발명은 평행축 방식의 입체 카메라에서 자동으로 주시각을 제어할 수 있는 장치 및 방법에 관한 것이다. 본 발명의 주시각 제어 장치는 렌즈와 영상 센서를 각각 구비하는 좌우 카메라를 포함하는 입체 카메라부와, 초점 거리에 따른 주시각 제어값이 포함된 룩업 테이블을 저장하는 메모리와, 자동 초점 기능에 의해 특정 물체에 대한 초점 거리를 검출하는 초점 거리 검출부와, 상기 좌우 카메라의 초점 거리가 결정되면, 상기 룩업 테이블을 통해 상기 초점 거리에 따른 주시각 제어값을 결정하는 주시각 제어부와, 상기 결정된 주시각 제어값에 따라 상기 좌우 카메라의 영상을 보정하는 영상 처리부와, 상기 보정된 영상을 표시하는 표시부를 포함함을 특징으로 한다. 입체 카메라, 평행축 방식, 주시각 제어, 영상 센서
Abstract:
본 발명은 고속 고분자 구동기 제작을 위한 고분자막의 표면 전처리 방법에 관한 것으로, 해당 고분자막에 대하여 최적의 섀도 마스크 패턴과 플라즈마 처리 시간을 결정하여 표면이 균일하게 되도록 표면 처리함으로써, 고분자막의 표면에 금속 전극을 흡착시킬 때 고분자막의 표면과 금속 전극의 흡착력이 향상되어 고분자막의 팽창과 수축이 쉽게 이루어지므로, 반응속도가 빠르며 고변위를 갖는 고분자 구동기를 제조할 수 있다. 이온성 고분자 금속 복합물, 비등방 플라즈마 처리, 섀도 마스크, 고속
Abstract:
PURPOSE: A carbon nanoparticles-polymer composite is provided to obtain a polymer film or patterns with different electric and mechanical properties by causing a concentration gradient of carbon nano-particles in the same thin film. CONSTITUTION: A method for preparing a carbon nanoparticles-polymer composite comprises the steps of: mixing a carbon nano-particle dispersion with a polymer solution to prepare a composite formation solution, wherein the carbon nano-particle dispersion includes nano metal with magnetism; arranging or maldistributing the carbon nano-particles by applying magnetic field to the composite formation solution; and polymerizing or drying the composite formation solution.
Abstract:
본 발명은 고속 고분자 구동기의 제조방법 및 이로부터 얻은 고속 고분자 구동기에 관한 것으로, 플라즈마 처리 공정을 이용하여 이온 전도성 고분자막의 표면이 균일하게 되도록 표면 처리함으로써, 기존의 샌드 블라스팅(sand blasting), 샌드 페이퍼(sand paper) 등의 표면 처리를 거쳐 제작된 고분자 구동기보다 균일한 표면을 갖게 되어 고분자막의 팽창과 수축이 쉽게 이루어지므로, 이에 따라 반응속도가 빠르며 고변위를 갖는 고분자 구동기를 제조할 수 있다. 플라즈마 처리, 고분자 구동기, 고속, 고변위
Abstract:
본 발명은 표면 코팅된 고분자 구동기 및 그의 제조방법에 관한 것으로, 상기 표면 코팅된 고분자 구동기는 이온 전도성 고분자막; 상기 이온 전도성 고분자막의 양면에 형성된 금속전극; 및 상기 각각의 금속전극 상에 형성된 코팅층을 포함한다. 고분자 구동기의 금속전극 표면을 코팅함에 따라서, 구동기 작동시 전기 자극에 의한 용매 이동에 의해 발생되는 내부 압력에 의해 전극 표면으로 용매가 누출되는 현상을 방지할 수 있으며, 따라서 고분자 구동기의 변위 및 구동력을 개선시킬 수 있다. 고분자 구동기, 표면 코팅, 변위, 구동력, 내구성