Abstract:
PURPOSE: A hybrid energy converter and a portable device including the same are provided to store an environment-friendly energy source which includes a temperature difference, vibration, pressure, and etc. by converting into electric energy, thereby charging a battery of the portable device without a separate charging apparatus. CONSTITUTION: A thermoelectric/piezoelectric device part(110) comprises piezoelectric device layers(112,114) which generate voltage. An energy source selection part(130) selects the voltage generated from the piezoelectric device layer. A voltage regulator(140) stores the selected voltage in an energy storage apparatus(200) by controlling the selected voltage. A protective layer prevents contamination and damage. A first insulating layer electrically and thermally insulates the piezoelectric device layers from each other. A second insulating layer electrically and thermally insulates the thermoelectric/piezoelectric device part from a substructure.
Abstract:
PURPOSE: An own generating multi-functional sensor and a manufacturing method thereof are provided to enable own power-generation with low consumable power and reduce the size of elements despite collecting various environmental information. CONSTITUTION: An own generating multi-functional sensor comprises an ultraviolet ray sensor(101), a temperature sensing unit(102), a humidity sensor(103), a heater(104), a gas detector unit(105), a vibration sensor(106), and a own generation unit(107). The elements are formed on one substrate(111). A laminating structure made of electrode and multi-functional materials is formed on the substrate. The sensors acquire different environmental information. The own generation unit is formed on the substrate wherein a fist bottom electrode, a multi-functional material, and a first top electrode are laminated. The own generation unit greatens electricity by applied vibration.
Abstract:
본 발명은, 타겟 프로브에 금속 나노입자를 부착하여 표지물질로 사용하는 경우, 상기 타겟 프로브와 고정 프로브와의 바이오 반응에 따라 상기 금속 나노입자들이 적절히 밀집된 상태에서, 광픽업 헤드로부터 적절한 세기의 레이저 광이 상기 금속 나노입자에 조사되면, 상기 금속 나노입자에 의한 광증폭 효과에 의해 더 많은 광 에너지가 상변화층에 전달되어 비정질-결정의 상변화가 더 잘 유도되는 원리를 이용한다. 따라서, 본 발명에 따르면, 타겟 프로브와 고정 프로브와의 미세한 바이오 반응에 의해 금속 나노입자의 밀도가 다소 낮은 경우에도 상변화층에 상변화가 매우 크게 유도되어 바이오 반응에 따른 정밀한 바이오 정보를 바이오칩에 기록할 수 있으며, 이에 따라 간단한 구조를 가지면서 정밀한 검출이 가능한 바이오칩 스캐닝 장치를 제작할 수 있다. 또한, 본 발명에 따르면, 광픽업 헤드의 광 검출기만으로도 상변화층으로부터 반사되는 반사율을 측정하여 상변화층에 기록된 바이오 정보를 용이하게 검출할 수 있으므로, 별도의 고정밀도 광 검출기를 구비할 필요가 없어 저가 및 소형화가 가능하다. 금속 나노입자, 광증폭, 상변화, 바이오칩, 광픽업 헤드, 반사도
Abstract:
A formation method of ZnO nanowire network pattern is provided to form ZnO nanowire network pattern and device of a desired shape and size at a low temperature with a stable yield by using a lithographic process and a sol-gel method. A formation method of ZnO nanowire network pattern comprises steps of: forming a photoresist pattern exposing a part of a substrate on the substrate; molding the ZnO nanowire network on a photoresist pattern and an exposed part of the substrate by a sol-gel method; and removing the photoresist pattern and forming the ZnO nanowire network pattern on the substrate. The step for forming the photoresist pattern comprises steps of: coating a photoresist on the substrate; exposing the photoresist; and developing the exposed photoresist.
Abstract:
A method for manufacturing an electronic device using a nanowire is provided to reduce a manufacturing cost and a manufacturing time for the electronic device by reducing a process using an E-beam. An electrode is formed on a substrate(S11). Plural nanowires are applied on the substrate on which the electrode is formed(S12). An image with respect to the substrate on which the nanowire and the electrode are formed is captured(S13). A virtual connection line connecting the nanowire to the electrode is drawn on the image by using an electrode pattern simulated through a computer program(S14). A photoresist for an E-beam is applied onto the substrate(S15). The photoresist formed on a position corresponding to the virtual connection line and the electrode pattern is removed by an E-beam lithography process(S16). A metal layer is deposited on the substrate(S17). The photoresist remaining on the substrate is removed by a lift-off process(S18).