Abstract:
A composition for use in bioseparation. The composition includes a plurality of hollow particles having a siliceous surface. The composition further includes a surface-modifying agent bonded to the hollow particles. The surface-modifying agent includes a binding segment and a reactive segment. The binding segment includes a silyl group and the reactive segment includes a reactive nitrogen group.
Abstract:
A microbial detection article and methods of using the same, the article comprising: a base member comprising a self-supporting water impervious substrate with first and second generally opposed major surfaces; a filter assembly defining a filter assembly aperture therein, and having a composite filter body mounted across the filter assembly aperture; wherein the composite filter body comprises: a microporous membrane, and a water-absorbent layer in fluid communication with the microporous membrane; and a cover sheet.
Abstract:
Ligand functionalized substrates, methods of making ligand functionalized substrates, and methods of using functionalized substrates are disclosed.
Abstract:
A composition is disclosed comprising a hydrophobic monomer having the structure:CH 2 =CR 4 C(O)NHC(R 1 R 1 )(C(R 1 R 1 )) n C(O)XR 3 wherein n is an integer of 0 or 1; R 1 is independently selected from at least one of: a hydrogen atom, alkyls, aryls, and alkylaryls, wherein the alkyls, aryls, and alkylaryls have a total of 10 carbon atoms or less; R 3 is a hydrophobic group selected from at least one of: alkyls, aryls, alkylaryls and ethers, wherein the alkyls, aryls, alkylaryls and ethers have a total number of carbon atoms ranging from 4 to 30; R 4 is H or CH 3 ; X is O or NH. In some embodiments the hydrophobic monomer is derived from an amine or an alcohol (HXR 3 ) that has a hydrophilicity index of 25 or less. A polymerizable composition comprising the hydrophobic monomer is disclosed, which optionally may comprise a cross-linking monomer and/or a non-cross-linking monomer. This polymerizable mixture may be used to from hydrophobically-derivatized supports, which may be used in applications such as hydrophobic interaction chromatography.
Abstract:
Methods for performing immunological assays are provided. The methods allow performing immunological assays with increased sensitivity, increased specificity, or both. Kits for performing immunological assays having increased sensitivity, increased specificity, or both, are also provided.
Abstract:
An article, and method of use, wherein the article includes: a substrate; a cationic coating bound to the substrate, wherein the cationic coating includes a guanidinyl-containing polymer that is crosslinked on the substrate; wherein the guanidinyl-containing polymer is of the following Formula (I), wherein: R 3 is a H, C 1 -C 12 (hetero)alkyl, C 5 -C 12 (hetero)aryl, or Polymer; each R 4 is independently H, C 1 -C 12 (hetero)alkyl, or C 5 -C 12 (hetero)aryl; each R 5 is H, C 1 -C 12 (hetero)alkyl, C 5 -C 12 (hetero)aryl, or N(R 4 ) 2 ; Polymer is a residue of an aminopolymer chain; m is 1 or 2; and x is an integer of at least 1; and wherein the guanidinyl-containing polymer is crosslinked with an amine-reactive polyepoxy compound having pendant -OH groups.
Abstract:
A polymer matrix composite comprising a porous polymeric network; and a plurality of functional particles distributed within the polymeric network structure, and wherein the polymer matrix composite has an air flow resistance at 25°C, as measured by the "Air Flow Resistance Test," of less than 300 seconds/50 cm 3 /500 micrometers; and wherein the polymer matrix composite has a density of at least 0.3 g/cm 3 ; and methods for making the same. The polymer matrix composites are useful, for example, as filters.
Abstract:
An article that includes a functionalized copolymer and the use thereof, particularly in a process for binding biomaterials, such as in a process for separating aggregated proteins from monomeric proteins in a biological solution; wherein the article includes: a) a porous substrate; and b) a copolymer covalently attached to the porous substrate, the copolymer comprising a hydrocarbon backbone and a plurality of pendant groups attached to the hydrocarbon backbone, wherein 1) each of a first plurality of pendant groups comprises: (a) at least one acidic group or salt thereof; and (b) a spacer group that directly links the at least one acidic group or salt thereof to the hydrocarbon backbone by a chain of at least 6 catenated atoms; and 2) each of a second plurality of pendant groups comprises: (a) at least one acidic group or salt thereof; and (b) a spacer group that directly links the at least one acidic group or salt thereof to the hydrocarbon backbone by a chain of at least 6 catenated atoms; and wherein the first plurality of pendant groups are different than the second plurality of pendant groups; and wherein a mole ratio of the first plurality of pendant groups to the second plurality of pendant groups is in a range of 95:5 to 5:95.
Abstract:
Film forming gel compositions, useful in creating conformable and flexible gel bandages, can be formulate from a film-forming polymer, a tackifier, and a volatile solvent. The film forming gels can also include antiseptics, cationic polymer coagulants, fillers, and other additives. The gel compositions form relatively thick films when dried on tissue, and can exhibit enhanced breathability to promote wound healing.
Abstract:
An article that can be used for biomaterial capture comprises (a) a porous substrate; and (b) borne on the porous substrate, a polymer comprising interpolymerized units of at least one monomer consisting of (1) at least one monovalent ethylenically unsaturated group, (2) at least one monovalent ligand functional group selected from acidic groups, basic groups other than guanidino, and salts thereof, and (3) a multivalent spacer group that is directly bonded to the monovalent groups so as to link at least one ethylenically unsaturated group and at least one ligand functional group by a chain of at least six catenated atoms.