Abstract:
The cable connector (19) for making an electrical contact with a cable conductor (2) of a cable (1) comprises two legs (190), at least one of which can make electrical contact with a cable conductor (2) inserted into the cable connector (19) into a contacting position, and the two legs (190) are capable of exerting a contacting force on a cable conductor (2) in the contacting position for holding the cable conductor (2) in the contacting position. When there is no cable (1) inserted in the cable connector (19), the legs (190) exert an non-vanishing initial force on each other. In other words, the cable connector has two prestressed legs. Ends of the legs press against each other with some force prior to the insertion of any cable into the connector. The cable connector can, e.g., be used as an insulation displacement connector and in connector terminal blocks. Methods for manufacturing such a cable connector (19) comprise methods, in which an elastic deformation in at least one section of the cable connector (19) is performed, while another section of the cable connector (19) is plastically deformed. Preferably, the cable connector is integrally made from one piece of bent sheet metal.
Abstract:
The cable connector for making an electrical contact with a cable (1) having a cable conductor (2), comprises a guiding means (4) for receiving one end (1a) of the cable (1) in an initial state (O), a contact element (6) for electrically contacting the cable conductor (2) in a final state, and a holding means (18) for holding the cable (1) in electrical contact with the contact element (6) in the final state, wherein the guiding means (4) and the contact element (6) are moveable relative to each other, allowing for movements between the initial state (O) and the final state. A spring device (7) is provided, which is arranged such that it exerts a force against the movement from the initial state (O) to the final state, and which moves the cable (1) towards the initial state (O) if the cable is not in the final state. A contact ensuring mechanism (8) can be provided, which in the final state reduces the force exerted by the spring device (7) against the movement from the initial state (O) to the final state. The cable connector can, e.g., be used as an insulation displacement connector and in connector terminal blocks.
Abstract:
A system and method for thermoelectric energy storage is described. A thermoelectric energy storage system (22, 36) having a heat exchanger (30) which contains a thermal storage medium, and a working fluid circuit for circulating a working fluid through the heat exchanger (30) for heat transfer with the thermal storage medium. The working fluid undergoes transcritical cooling during the charging and transcritical heating during the discharging cycle as it exchanges heat with the thermal storage medium. Improved roundtrip efficiency is achieved through minimising the maximum temperature difference (”Tmax) between the working fluid and the thermal storage medium during operating cycles.
Abstract:
A system 40 and a method for recovering of waste heat are disclosed in which in a heat recovery cycle 54 waste heat is stored in a storage 46, in a heat pump cycle 12 the heat in the storage 46 is upgraded to heat in a high temperature storage 26, and in a heat engine cycle 28 the upgraded heat in the high temperature storage 62 is used for generating electricity.
Abstract:
A system and method for thermoelectric energy storage is described. A thermoelectric energy storage system (22, 36) having a heat exchanger (30) which contains a thermal storage medium, and a working fluid circuit for circulating a working fluid through the heat exchanger (30) for heat transfer with the thermal storage medium. The working fluid undergoes transcritical cooling during the charging and transcritical heating during the discharging cycle as it exchanges heat with the thermal storage medium. Improved roundtrip efficiency is achieved through minimising the maximum temperature difference (ΔTmax) between the working fluid and the thermal storage medium during operating cycles.
Abstract:
Es wird eine Batteriespeichersystem und ein Verfahren zum Betrieb eines Batteriespeichersystems angegeben, welches Batteriespeichersystem einen Umrichter (1) für Gleich- und Wechselrichterbetrieb zur Ankopplung an ein elektrisches Wechselspannungsnetz aufweist. Zu Vermeidung einer tiefen Entladung sowie eines schnell wechselnden Lade-Entlade-Zyklusses ist eine erste und eine zweite Gleichstromstellereinheit (2, 3) vorgesehen, wobei jede Gleichstromstellereinheit (2, 3) einen bidirektionalen Gleichstromsteller (5, 6) und eine mit dem jeweiligen Eingang des zugehörigen bidirektionalen Gleichstromstellers (5, 6) verbundene Batterie (8, 9) aufweist und die Ausgänge der bidirektionalen Gleichstromsteller (5, 6) mit der Gleichspannungsseite des Umrichters (1) und parallel miteinander verbunden sind. Bei Erreichen des ersten Grenzwertes (LZ1) des Ladezustandes der Batterie (8) der ersten Gleichstromstellereinheit (2) bis zum Erreichen des zweiten Grenzwertes (LZ2) des Ladezustandes der Batterie (8) der ersten Gleichstromstellereinheit (2) oder bei Erreichen des zweiten Grenzwertes (LZ2) des Ladezustandes der Batterie (9) der zweiten Gleichstromstellereinheit (3) bis zum Erreichen des ersten Grenzwertes (LZ1) des Ladezustandes der Batterie (9) der zweiten Gleichstromstellereinheit (3) und bei Erreichen des ersten Schwellwertes (f1) wird elektrische Energie aus der Batterie (8) der ersten Gleichstromstellereinheit (2) über den bidirektionalen Gleichstromsteller (5) der ersten Gleichstromstellereinheit (2) und den Umrichter (1) in das elektrische Wechselspannungsnetz eingespeist. Ferner wird bei Erreichen des ersten Grenzwertes (LZ1) des Ladezustandes der Batterie (8) der ersten Gleichstromstellereinheit (2) bis zum Erreichen des zweiten Grenzwertes (LZ2) des Ladezustandes der Batterie (8) der ersten Gleichstromstellereinheit (2) oder bei Erreichen des zweiten Grenzwertes (LZ2) des Ladezustandes der Batterie (9) der zweiten Gleichstromstellereinheit (3) bis zum Erreichen des ersten Grenzwertes (LZ1) des Ladezustandes der Batterie (9) der zweiten Gleichstromstellereinheit (3) und bei Erreichen des zweiten Schwellwertes (f2) elektrische Energie aus dem elektrischen Wechselspannungsnetz über den Umrichter (1) und den bidirektionalen Gleichstromsteller (6) der zweiten Gleichstromstellereinheit (3) in die Batterie (9) der zweiten Gleichstromstellereinheit (3) eingespeist.
Abstract:
Because the efficiency of the thermal energy storage technology is inherently restricted, its beneficial use is limited to very particular economic boundary conditions, namely a large difference between the value of electricity going into the unit and the value of electricity coming out of the unit. With the reduction in wind power equipment prices and the cost of fossil fuels and/or their combustion products this is the case for wind power. Wind is a free fuel and the value of wind power when there is too little load demand is essentially zero, and the value of wind power when there is demand is considerable indeed. Under these circumstances, electrothermal energy storage in a solid heat storage medium provides for a cost efficient system for storing energy and an economical way of generating electricity therefrom.
Abstract:
The present invention provides a fluid-to-fluid through-the-wall heat exchanger for condensation of a vapour in a primary fluid stream, characterised in that the flow path (5) of the primary fluid stream is defined by an inner cylinder (1), an outer cylinder (2) arranged concentrically to and surrounding the inner cylinder, and a helical space holder (3) arranged between the inner and the outer cylinder. This condenser is easily coated such that all wetted materials are corrosion resistant. Compared to other condensers with identical ratings, this heat exchanger shows a smaller flow resistance, resulting in a smaller power demand of the blower or pumps. It is therefore particularly suitable for fuel cell systems where the condensed water has to be recirculated in the system and where purity demands are high and parasitic blower power should be minimal. The manufacturing of such a double envelope cylindrical heat exchanger is particularly simple and cost effective.
Abstract:
Der Kondensator zeichnet sich im Wesentlichen dadurch aus, dass ein Element aus Metallschaum (9) zur Kontaktierung der Kondensator-Elektroden verwendet wird. Hierzu liegt das Metallschaumelement (9) an einer Kontaktfläche der zu kontaktierenden Elektrode an. Die Kontaktfläche kann bspw. eine flammgespritzte Schicht (8) aufweisen. Das heikle direkte Löten einer Sammelelektrode an die Elektroden entfällt. Gegebenenfalls kann eine Sammelelektrode (10) aber an das Metallschaumelement angelötet werden.