Abstract:
Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp) 2 , wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula (I), wherein each of R 1 -R 5 is the same as or different from one another, with each being independently selected from among hydrogen, C 1 -C 12 alkyl, C 1 -C 12 amino, C 6 -C 10 aryl, C 1 -C 12 alkoxy, C 3 -C 6 alkylsilyl, C 2 -C 12 alkenyl, R 1 R 2 R 3 NNR 3 , wherein R 1 , R 2 and R 3 may be the same as or different from one another and each is independently selected from hydrogen and C 1 -C 6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.
Abstract:
A composite dielectric material including an early transition metal or metal oxide base material and a dopant, co-deposited, alloying or layering secondary material, selected from among Nb, Ge, Ta, La, Y, Ce, Pr, Nd, Gd, Dy, Sr, Ba, Ca, and Mg, and oxides of such metals, and alumina as a dopant or alloying secondary material. Such composite dielectric material can be formed by vapor deposition processes, e.g., ALD, using suitable precursors, to form microelectronic devices such as ferroelectric high k capacitors, gate structures, DRAMs, and the like.
Abstract:
Compositions and methods of using the said composition for removing polymeric materials from surfaces, preferably cleaning contaminant buildup from a lithography apparatus without total disassembly of the said apparatus. The said compositions comprise at least one organic solvent and one non-ionic surfactant. Moreover, the pH of the said composition is about 5 to 9.
Abstract:
Zirconium, hafnium, titanium and silicon precursors useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of corresponding zirconium-containing, hafnium- containing, titanium-containing and silicon-containing films, respectively. The disclosed precursors achieve highly conformal deposited films characterized by minimal carbon incorporation.
Abstract:
Cobalt precursors for forming metallic cobalt thin films in the manufacture of semiconductor devices, and methods of depositing the cobalt precursors on substrates, e.g., using chemical vapor deposition or atomic layer deposition processes. Packaged cobalt precursor compositions, and microelectronic device manufacturing systems are also described.
Abstract:
Silicon precursors for forming silicon-containing films in the manufacture of semiconductor devices, such as films including silicon carbonitride, silicon oxycarbonitride, and silicon nitride (Si 3 N 4 ), and a method of depositing the silicon precursors on substrates using low temperature (e.g.,
Abstract translation:在制造半导体器件(例如包括碳氮化硅,硅碳氮氧化物和氮化硅(Si 3 N 4 N 4)的膜的半导体器件的制造中用于形成含硅膜的硅前驱体,以及 使用低温(例如,<550℃)化学气相沉积工艺在衬底上沉积硅前体的方法,用于制造ULSI器件和器件结构。
Abstract:
Methods of reducing the capillary forces experienced by fragile high aspect ratio structures during drying to substantially prevent damage to said high aspect ratio structures during drying. They include modifying the surface of the high aspect ratio structures such that the forces are sufficiently minimized and as such less than 10% of the high aspect ratio features will have bent or collapsed during drying of the structure having said features thereon.
Abstract:
Apparatuses and processes for recycling printed wire boards, wherein electronic components, precious metals and base metals may be collected for reuse and recycling. The apparatuses generally include a mechanical solder removal module and/or a thermal module, a chemical solder removal module, and a precious metal leaching module, wherein the modules are attached for continuous passage of the e-waste from module to module.