Abstract:
A method including evaluating, with respect to a parameter representing remaining uncertainty of a mathematical model fitting measured data, one or more mathematical models for fitting measured data and one or more measurement sampling schemes for measuring data, against measurement data across a substrate, and identifying one or more mathematical models and/or one or more measurement sampling schemes, for which the parameter crosses a threshold.
Abstract:
A target structure including one or more periodic structures is formed on a substrate by a lithographic process. A image of the target structure is detected while illuminating the target structure with a beam of radiation, the image being formed using a first part of non-zero order diffracted radiation while excluding zero order diffracted radiation. Intensity values extracted from at least one region of interest within the image are used to determine a property of the periodic structure, for example asymmetry or overlay. To locate the ROI, a processing unit recognizes locations of a plurality of boundary features in the image of the target structure. The number of boundary features in each direction is at least twice a number of boundaries of periodic structures within the target structure. The accuracy of locating the ROI is greater than by recognizing only the boundaries of the periodic structure(s). The boundary features can be created by providing interruptions in a boundary region of the periodic structure. Regions of interest can be located in X and Y directions simultaneously, and with diffraction in X and Y directions simultaneously.
Abstract:
A method of determining an overlay error. Measuring an overlay target having process-induced asymmetry. Constructing a model of the target. Modifying the model, e.g., by moving one of the structures to compensate for the asymmetry. Calculating an asymmetry-induced overlay error using the modified model. Determining an overlay error in a production target by subtracting the asymmetry-induced overlay error from a measured overlay error. In one example, the model is modified by varying asymmetry p (n'), p (n'') and the calculating an asymmetry-induced overlay error is repeated for a plurality of scatterometer measurement recipes and the step of determining an overlay error in a production target uses the calculated asymmetry-induced overlay errors to select an optimum scatterometer measurement recipe used to measure the production target.
Abstract:
A method of determining an edge roughness parameter has the steps: (1010) controlling a radiation system to provide a spot of radiation at a measurement position for receiving a substrate; (1020) receiving a measurement signal from a sensor for measuring intensity of a forbidden diffraction order (such as a second order) being diffracted by a metrology target at the measurement position when the metrology target is illuminated by the spot of radiation, the metrology target comprising a repetitive pattern being configured by configuration of a linewidth / pitch ratio (of about 0.5) to control an amount of destructive interference that leads to forbidding of the diffraction order, the sensor being configured to provide the measurement signal based on the measured intensity; and (1040) determining an edge roughness parameter based on the measured intensity of the forbidden diffraction order.
Abstract:
Systems and methods for simulating a plasma etch process are disclosed. According to certain embodiments, a method for simulating a plasma etch process may include predicting a first characteristic of a particle of a plasma in a first scale based on a first plurality of parameters; predicting a second characteristic of the particle in a second scale based on a modification of the first characteristic caused by a second plurality of parameters; and simulating an etch characteristic of a feature based on the first and the second characteristics of the particle. A multi-scale physical etch model or a multi-scale data driven model may be used to simulate the plasma etch process.