Abstract:
An exposure apparatus including a projection system configured to project a plurality of radiation beams onto a target; a movable frame that is at least rotatable around an axis; and an actuator system configured to displace the movable frame to an axis away from an axis corresponding to the geometric center of the movable frame and to cause the frame to rotate around an axis through the center of mass of the frame.
Abstract:
The invention relates to intensity values for a plurality of beams used to irradiate a plurality of locations on a target are determined with reference to the position and/or rotation of the locations. Also provided is an associated lithographic or exposure apparatus, an associated device manufacturing method and an associated computer program.
Abstract:
A metrology method relating to measurement of a structure on a substrate, the structure being subject to one or more asymmetric deviation. The method includes obtaining at least one intensity asymmetry value relating to the one or more asymmetric deviations, wherein the at least one intensity asymmetry value includes a metric related to a difference or imbalance between the respective intensities or amplitudes of at least two diffraction orders of radiation diffracted by the structure; determining at least one phase offset value corresponding to the one or more asymmetric deviations based on the at least one intensity asymmetry value; and determining one or more measurement corrections for the one or more asymmetric deviations from the at least one phase offset value.
Abstract:
A method for determining one or more optimized values of an operational parameter of a sensor system configured for measuring a property of a substrate is disclosed the method including: determining a quality parameter for a plurality of substrates; determining measurement parameters for the plurality of substrates obtained using the sensor system for a plurality of values of the operational parameter; comparing a substrate to substrate variation of the quality parameter and a substrate to substrate variation of a mapping of the measurement parameters; and determining the one or more optimized values of the operational parameter based on the comparing.
Abstract:
Liquid is supplied to a space between the projection system and the substrate by an inlet. In an embodiment, an overflow region removes liquid above a given level. The overflow region may be arranged above the inlet and thus the liquid may be constantly refreshed and the pressure in the liquid may remain substantially constant.
Abstract:
A lithographic apparatus includes an alignment sensor configured to determine the position of an alignment target having a periodic structure. The alignment sensor includes a demultiplexer to demultiplex a number of intensity channels. The demultiplexer includes a number of stages arranged in series and a number of demultiplexing components, each demultiplexing component operable to divide an input radiation beam into two radiation beam portions. The first stage has a first demultiplexing component that is arranged to receive as an input radiation beam an incident radiation beam. Each successive stage is arranged such that it has twice the number of demultiplexing components as a preceding stage, each demultiplexing component of each stage after the first stage receiving as an input one of the radiation beam portions output from a demultiplexing component of the preceding stage.
Abstract:
A lithographic apparatus is disclosed including a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid, an outlet configured to remove a mixture of liquid and gas passing through a gap between a liquid confinement structure of the liquid supply system and the substrate, and an evacuation system configured to draw the mixture through the outlet, the evacuation system having a separator tank arranged to separate liquid from gas in the mixture and a separator tank pressure controller, connected to a non-liquid-filled region of the separator tank, configured to maintain a stable pressure within the non-liquid-filled region.
Abstract:
A structure of interest (T) is irradiated with radiation for example in the x-ray or EUV waveband, and scattered radiation is detected by a detector (19, 274, 908, 1012). A processor (PU) calculates a property such as linewidth (CD) or overlay (OV), for example by simulating (S16) interaction of radiation with a structure and comparing (S17) the simulated interaction with the detected radiation. The method is modified (S14a, S15a, S19a) to take account of changes in the structure which are caused by the inspection radiation. These changes may be for example shrinkage of the material, or changes in its optical characteristics. The changes may be caused by inspection radiation in the current observation or in a previous observation.
Abstract:
An inspection method determines values of profile parameters of substrate patterns. A baseline substrate with a baseline pattern target (BP) is produced that has a profile described by profile parameters, for example CD (median critical dimension), SWA (side wall angle) and RH (resist height). Scatterometry is used to obtain first and second signals from first and second targets. Values of differential pattern profile parameters are calculated using a Bayesian differential cost function based on a difference between the baseline pupil and the perturbed pupil and dependence of the pupil on pattern profile parameters. For example, the difference is measured between a baseline process and a perturbed process for stability control of a lithographic process. Fed-forward differential stack parameters are also calculated from observations of stack targets on the same substrates as the pattern targets.
Abstract:
A device manufacturing method includes conditioning a beam of radiation using an illumination system. The conditioning includes controlling an array of individually controllable elements and associated optical components of the illumination system to convert the radiation beam into a desired illumination mode, the controlling including allocating different individually controllable elements to different parts of the illumination mode in accordance with an allocation scheme, the allocation scheme selected to provide a desired modification of one or more properties of the illumination mode, the radiation beam or both. The method also includes patterning the radiation beam having the desired illumination mode with a pattern in its cross-section to form a patterned beam of radiation, and projecting the patterned radiation beam onto a target portion of a substrate.