Abstract:
A process for the preparation of a solid catalyst component for the (co)polymerization of CH 2 =CHR olefins, in which R is hydrogen or hydrocarbyl radical with 1-12 carbon atoms, comprising a Ti compound and optionally an electron donor on a Mg chloride based support, said process comprising one or more steps (a) carried out at a temperature ranging from 0 to 150°C in which a Mg based compound of formula (MgCl m X 2-m )•nLB, in which m ranges from 0 to 2, n ranges from 0 to 6, X is, independently R 1 , OR 1 , -OCOR 1 or O-C(O)-OR 1 group, in which R 1 is a C 1 -C 20 hydrocarbon group, and LB is a Lewis base, is reacted with a liquid medium comprising a Ti compound, having at least a Ti-Cl bond, in an amount such that the Ti/Mg molar ratio is greater than 3 and at least one step (b) in which the solid particles coming from (a) are suspended in a liquid medium comprising hydrocarbons at a temperature ranging from 10 to 100°C, said process being characterized by the fact that at least one of said steps (a) and/or (b) is carried out in the presence of 0.2 to 20.0% by weight, with respect to the amount of Mg compound, of particles of a solid compound containing more than 50% by weight of SiO 2 units, is disclosed.
Abstract:
A Prepolymerized catalyst component for the polymerization of olefins comprising a solid catalyst component which comprises Mg, Ti, and chlorine atoms and an electron donor (ID) said prepolymerized catalyst component being characterized by the fact that: - the electron donor (ID) is constituted by at least 80%mol of 1,3 diethers with respect to the total molar amount of electron donor compounds; -the prepolymerized catalyst has a porosity due to pores with diameters up to Ιμιη of less than 0.2 cm3/g; -it contains an amount of ethylene prepolymer of less than 45% with respect to the total weight of prepolymerized catalyst.
Abstract:
A terpolymer containing propylene, ethylene and 1-hexene obtainable by the step of copolymerizing propylene, ethylene and 1-hexene in the presence of a catalyst system comprising the product obtained by contacting the following components: (a) a solid catalyst component comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being present in an amount from 40 to 90% by mol with respect to the total amount of donors and selected from succinates and the other being selected from 1,3 diethers, (b) an aluminum hydrocarbyl compound, and (c) optionally an external electron donor compound, wherein in the terpolymer (i) the content of 1-hexene derived units ranges from 0.5 to 5.0 wt%; (ii) the content of ethylene derived units is higher than 1.4 t% and fulfils the following relation (1): C2
Abstract:
Automotive interior element comprising a polypropylene composition comprising (percent by weight): A) from 60% to 90% of a propylene homopolymer having: i) a polydispersity Index (P.I.) value of from 3.5 to 10.0; ii) a fraction insoluble in xylene at 25 °C, higher than 90 %; and iii) a MFR L (Melt Flow Rate according to ISO 1133, condition L, i.e. 230°C and 2.16 kg load) from 50 to 200 g/10 min; B) from 10% to 40%; of a copolymer of propylene with from 30% to 60% of ethylene derived units; the composition having an intrinsic viscosity of the fraction soluble in xylene at 25 °C comprised between 2.5 and 4.0 dl/g; a MFR L (Melt Flow Rate according to ISO 1133, condition L, i.e. 230°C and 2.16 kg load) from 15 to 100 g/10 min and all the three values of carbon emission measured according to VDA 227 (C-emission) are lower than 30.0 μgC/g; wherein the values of carbon emission are measured in the ex reactor propylene composition.
Abstract:
A process for the preparation of propylene polymer compositions carried out in the presence of a catalyst system comprising (a) a solid catalyst component having average particle size ranging from 15 to 80 μm comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being present in an amount from 50 to 90% by mol with respect to the total amount of donors and selected from succinates and the other being selected from 1,3 diethers, (b) an aluminum alkyl and optionally (c) an external electron donor compound, and comprising the following steps: (i) contacting the catalyst components (a), (b) and optionally (c); (ii) pre -polymerizing up to forming amounts of polymer from about 0.1 up to about 1000 g per gram of solid catalyst component (a); (iii)polymerizing propylene producing a propylene (co)polymer being for at least 85% by weight of insoluble in xylene at 25°C and (iv)in a successive step, carried out in gas-phase, polymerizing mixtures of ethylene with α-olefϊns CH 2 =CHR in which R is a hydrocarbon radical having 1-10 carbon atoms, to produce the said ethylene copolymer.
Abstract:
A solid catalyst component for the polymerization of olefins comprising Mg, Ti, halogen, and an electron donor compound selected from glutarates said catalyst being characterized by specific porosity features and being able to produce olefin polymers endowed with low bulk density and relatively high porosity.
Abstract:
A process for the preparation of high purity propylene polymers carried out in the presence of a catalyst comprising the product obtained by contacting: (a) a solid catalyst component comprising Mg, Ti and at least a first internal electron donor compound (1ID) selected among the succinates and a second internal electron donor compound (2ID) selected among the 1,3-diethers, wherein the molar ratio of first internal donor over second internal donor 1ID:2ID is comprised between 4:6 and 9:1, with (b) an organo-aluminium compound, and optionally with (c) an external electron donor compound, said process being carried out at a temperature equal or higher than78°C and by employing a molar ratio of organo-aluminum compound over solid catalyst component (b):(a) of lower than 5.
Abstract:
Films or sheets of polypropylene, particularly biaxially oriented polypropylene (BOPP) films, exhibiting excellent physical and mechanical properties combined with good processing characteristics can be prepared from propylene polymers prepared in the presence of Ziegler-Natta catalysts comprising a succinate and a diether compound.
Abstract:
A process for the preparation of propylene polymer compositions comprising from 50 to 90% by weight of a propylene polymer fraction insoluble in xylene at 25°C, and from 10 to 50% by weight of an ethylene copolymer fraction soluble in xylene at 25°C, said process being carried out in the presence of a specific catalyst system, is also characterized by the following step: (i) contacting the catalyst components (a), (b) and optionally (c) for a period of time ranging from 0.1 to 120 minutes, at a temperature ranging from 0 to 90°C; (ii) polymerizing propylene in the optional presence of ethylene and/or C 4 -C 10 alpha olefins producing a propylene (co)polymer being for at least 85% by weight of insoluble in xylene at 25°C and (iii) in a successive step, carried out in gas-phase, in the presence of the product coming from (ii), polymerizing mixtures of ethylene with α-olefins CH 2 =CHR in which R is a hydrocarbon radical having 1-10 carbon atoms, to produce an ethylene copolymer. An increased reactivity in the last step is observed.
Abstract:
A propylene polymer composition comprising (percent by weight): A) 74%-84% of a propylene homopolymer having a Polydispersity Index (P.I.) value of from 4.6 to 10, a fraction insoluble in xylene at 25 °C, higher than 90 %, and a MFR L (Melt Flow Rate according to ISO 1133, condition L, i.e. 230°C and 2.16 kg load) from 110 to 200 g/10 min; B) 16%-26%, of a copolymer of propylene with from 39% to 48%, of ethylene derived units; the composition having an intrinsic viscosity of the fraction soluble in xylene at 25 °C comprised between 2.7 and 4.0 dl/g; and a MFR L (Melt Flow Rate according to ISO 1133, condition L, i.e. 230°C and 2.16 kg load) from 30 to 80 g/10 min.