Abstract:
A method and system for creating a substantially planar face in a substrate, the method including directing one or more beams at a first surface of a substrate to remove material from a first location in the substrate, the beam being offset from a normal to the first surface by a nonzero curtaining angle; sweeping the one or more beams in a plane that is perpendicular to the first surface to mill one or more initial cuts in the substrate, the initial cuts exposing a second surface that is substantially perpendicular to the first surface; rotating the substrate through a nonzero rotation angle about an axis other than an axis that is normal to the first beam or parallel to the first beam; directing the first beam at the second surface to remove additional material from the substrate without changing the first nonzero curtaining angle; and scanning the one or more beams in a pattern across the second surface to mill one or more finishing cuts in the substrate.
Abstract:
A method and apparatus for selective etching a substrate using a focused beam. For example, multiple gases may be used that are involved in competing beam-induced and spontaneous reactions, with the result depending on the materials on the substrate. The gases may include, for example, an etchant gas and an auxiliary gas that inhibits etching.
Abstract:
A cluster source producing a beam of charged clusters 108 is used to assist charged particle beam processing on a work piece 112. For example, a protective layer is applied using a cluster source and a precursor gas, the gas being supplied by a gas injection system 104. The large mass of the cluster and the low energy per atom or molecule in the cluster restricts damage to within a few nanometers of the surface of the work piece. Fullerenes or clusters of fullerenes, bismuth, gold or Xe can be used with a precursor gas to deposit material onto a surface, or can be used with an etchant gas to etch the surface. Clusters can also be used to deposit material directly onto the surface to form a protective layer for charged particle beam processing or to provide energy to activate an etchant gas. An additional charged particle beam 107 can assist in machining the work piece when e.g. a protective layer is applied.
Abstract:
A method and apparatus for directing light or gas or both to a specimen positioned within about 2 mm from the lower end of a charged particle beam column. The charged particle beam column assembly includes a platform defining a specimen holding position and has a set of electrostatic lenses each including a set of electrodes. The assembly includes a final electrostatic lens that includes a final electrode that is closest to the specimen holding position. This final electrode defines at least one internal passageway having a terminus that is proximal to and directed toward the specimen holding position.
Abstract:
A method and apparatus for selective etching a substrate using a focused beam. For example, multiple gases may be used that are involved in competing beam-induced and spontaneous reactions, with the result depending on the materials on the substrate. The gases may include, for example, an etchant gas and an auxiliary gas that inhibits etching.