Abstract:
Beam-induced deposition decomposes a precursor at precise positions on a surface. The surface is processed to provide linker groups on the surface of the deposit, and the sample is processed to attach nano-objects to the linker groups. The nano-objects are used in a variety of application. When a charged particle beam is used to decompose the precursor, the charged particle beam can be used to form an image of the surface with the nano-objects attached.
Abstract:
An improved apparatus for laser processing that prevents material redeposition during laser ablation but allows material to be removed at a high rate. In a preferred embodiment, laser ablation is performed in a chamber (140, 501) filled with high pressure precursor (etchant) gas so that sample particles ejected during laser ablation will react with the precursor gas in the gas atmosphere of the sample chamber. When the ejected particles (108) collide with precursor gas particles (202), the precursor is dissociated, forming a reactive component that binds the ablated material. In turn, the reaction between the reactive dissociation by-product and the ablated material forms a new, volatile compound (204) that can be pumped away in a gaseous state rather than redepositing onto the sample (104).
Abstract:
A system for beam-induced deposition or etching, in which a charged particle or laser beam can be directed to a work piece within a single vacuum chamber, either normally incident or at an angle. Simultaneously with beam illumination of the work piece, a deposition or etch precursor gas is co-injected or premixed with a purification compound and (optionally) a carrier gas prior to injection into the process chamber. The beam decomposes the deposition precursor gas to deposit a film only in areas illuminated by the beam, or decomposes the etch precursor gas to etch a film only in areas illuminated by the beam. Undesired impurities such as carbon in the deposited film are removed during film growth by interaction with adsorbed species on the work piece surface that are generated by interaction of the beam with adsorbed molecules of the film purification compound. Alternatively, the film purification compound can be used to inhibit oxidation of the material etched by the etch precursor gas. By co-injecting or premixing the deposition or etch precursor gas and film purification compound prior to injection, the deposition or etch process may be optimized with respect to growth/etch rate and achievable material purity.
Abstract:
Improved method of and system for substrate micromachining is described. Preferred embodiments of the present invention provide improved methods for the utilization of charged particle beam masking and laser ablation. A combination of the advantages of charged particle beam mask fabrication and ultra short pulse laser ablation are used to significantly reduce substrate processing time and improve lateral resolution and aspect ratio of features machined by laser ablation to preferably smaller than the diffraction limit of the machining laser.
Abstract:
Various methods and systems are provided for imaging a sample under low vacuum with a charged particle beam. A magnetic field is provided in a detection area of the detector. Gas and plasma are provided in the detection area while detecting charged particles emitted from the sample. Sample image is formed based on the detected charged particles.
Abstract:
Charged particle beam imaging and measurement systems are provided using gas amplification with an improved imaging gas. The system includes a charged particle beam source for directing a charged particle beam to work piece, a focusing lens for focusing the charged particles onto the work piece, and an electrode for accelerating secondary electrons generated from the work piece irradiation by the charged practice beam, or another gas cascade detection scheme. The gas imaging is performed in a high pressure scanning electron microscope (HPSEM) chamber for enclosing the improved imaging gas including CH 3 CH 2 OH (ethanol) vapor. The electrode accelerates the secondary electrons though the CH 3 CH 2 OH to ionize the CH 3 CH 2 OH through ionization cascade to amplify the number of secondary electrons for detection. An optimal configuration is provided for use of the improved imaging gas, and techniques are provided to conduct imaging studies of organic liquids and solvents, and other CH 3 CH 2 OH-based processes.
Abstract:
A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or micro-electromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
Abstract:
An environmental cell for a charged particle beam system allows relative motion between the cell mounted on an X-Y stage and the optical axis of the focusing column, thereby eliminating the need for a sub-stage within the cell. A flexible cell configuration, such as a retractable lid, permits a variety of processes, including beam-induced and thermally-induced processes. Photon yield spectroscopy performed in a charged particle beam system and using gas cascade amplification of the photoelectrons allows analysis of material in the cell and monitoring of processing in the cell. Luminescence analysis can be also performed using a retractable mirror.