Abstract:
PROBLEM TO BE SOLVED: To reduce a circuit size and improve manufacturing efficiency by using a capacitor contact for forming a bit-line trench and by forming a conductive bit line that is electrically connected to a field effect transistor in the trench. SOLUTION: A capacitor 100 is fully insulated from a bit line 60 by a dielectric material 80, and the electrical short-circuiting between the bit line 60 and the capacitor 100 is prevented. Further, a capacitor contact 31 is fully insulated from the bit line 60 similarly by an insulation spacer 41. Further, since the spacer 41 is formed in an opening 40 for the bit line 60, the capacitor contact 31 cannot become smaller. Therefore, the capacitor contact 31 with higher importance retains its size and the bit line 60 with lower importance becomes somewhat smaller, thus manufacturing smaller stack structure and hence higher- density integrated circuit device.
Abstract:
PROBLEM TO BE SOLVED: To provide a structure of a control collapse chip connection (C4) and its manufacturing method, and particularly, a structure to improve reliability of lead-free C4 interconnection and its method. SOLUTION: The structure includes a ball limited metalization (BLM) layer and a solder ball of control collapse chip connection (C4) formed on the BLM layer. Moreover, the structure includes the final metal pad layer under the BLM layer and a cap layer under the final metal pad layer. Then the structure includes an air gap between the final metal pad layer and one of the BLM layer and cap layer under the C4 solder ball. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide structures with improved solder bump connections and methods of fabricating such structures. SOLUTION: Structures with improved solder bump connections and methods of fabricating such structures are provided herein. The structure includes a via formed in a dielectric layer to expose a contact pad and a capture pad formed in the via and over the dielectric layer. The capture pad has openings over the dielectric layer to form segmented features. The solder bump is deposited on the capture pad and the openings over the dielectric layer. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a semiconductor device of high strength that lowers an effective dielectric constant k eff , maintains an inter-level vertical capacity in an interconnection at a low level and a manufacturing method of the same. SOLUTION: The method of manufacturing the device comprises a step for providing a structure having an insulating layer 120 of at least one interconnection 130 and a step for forming a sublithographic template mask 150 on the insulating layer. A sublithographic feature 135a is formed in the vicinity of at least one intereconnection by performing etching on the insulating layer through the sublithographic template mask using a selective etching step. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a method for forming the patterned metal electrode when the metal itself is hard to etch. SOLUTION: The pattern of the metal than is hard to etch is formed by converting the metal that is hard to etch into a plurality of metal components that can be etched in the region, wherein the metal than is hard to etch is removed. This method includes the step, which attaches a metal layer 8 that is hard to etch on a sacrifice metal composition layer 7 and an exposed region, the step, which forms a plurality of metal compositions that can be etched by the reaction of the sacrifice metal composition layer 7 and the metal 8 that is hard to etch, and the step, which selectively removes the plurality of the metal compositions that can be etched and makes to remain the patterned metal layer that is hard to etch on the surface.
Abstract:
PROBLEM TO BE SOLVED: To adjust the threshold voltage at the corner of a device without requiring any additional mask by doping the central part of a channel region at some concentration and doping a channel region adjacent to a corner region at a higher concentration. SOLUTION: N type (arsenic) dopant ions 19 are implanted compensatingly. The compensatory implantation is performed in order to compensate for the threshold voltage implantation at the part of the side wall of STI trench structures 18a-18c contiguous to the corner of a substrate 12 other than the corner region 25 and to suppress the effect of P-type ion implantation 21 in the channel region onto the following stage by means of N type doping ions 19 so that the corner region 25 has a higher doping concentration after boron B doping stage. A spacer 16 prevents the compensatory implantation at the corner of the device except the central channel regions 20a, 20b, 20c and 20d.
Abstract:
Protuberances (5), having vertical (h) and lateral (p) dimensions less than the wavelength range of lights detectable by a photodiode (8), are formed at an optical interface between two layers having different refractive indices. The protuberances may be formed by employing self-assembling block copolymers that form an array of sub lithographic features of a first polymeric block component (112) within a matrix of a second polymeric block component (111). The pattern of the polymeric block component is transferred into a first optical layer (4) to form an array of nanoscale protuberances. Alternately, conventional lithography may be employed to form protuberances having dimensions less than the wavelength of light. A second optical layer is formed directly on the protuberances of the first optical layer. The interface between the first and second optical layers has a graded refractive index, and provides high transmission of light with little reflection.
Abstract:
A method for forming preferably Pb-lead C4 connections or capture pads 37 with ball limiting metallization on an integrated circuit chip 30 by using a damascene process and preferably Cu metallization 32 in the chip 30 and in the ball limiting metallization for compatibility. In two one embodiment, the capture pad 52 is formed in the top insulating layer 51 and it also serves as the final level of metallization in the chip.
Abstract:
An image sensor (20) and method of fabrication wherein the sensor includes Copper (Cu) metallization levels (135a, 135b) allowing for incorporation of a thinner interlevel dielectric stack (130a-130c) to result in a pixel array (100) exhibiting increased light sensitivity. The image sensor includes structures having a minimum thickness of barrier layer metal (132a, 132b) that traverses the optical path of each pixel in the sensor array or, that have portions (50) of barrier layer metal selectively removed from the optical paths of each pixel, thereby minimizing reflectance. That is, by implementing various block or single mask methodologies, portions of the barrier layer metal are completely removed at locations of the optical path for each pixel in the array. In a further embodiment, the barrier metal layer (142) may be formed atop the Cu metallization by a self-aligned deposition.
Abstract:
Ferro-electric capacitor modules, methods of manufacture and design structures. The method of manufacturing the ferro-electric capacitor includes forming a barrier layer on an insulator (18) layer of a CMOS structure (10). The method further includes forming a top plate (32) and a bottom plate (28) over the barrier layer. The method further includes forming a ferro-electric material (30) between the top plate (32) and the bottom plate (28). The method further includes encapsulating the barrier layer, top plate (32), bottom plate (28) and ferro-electric material (30) with an encapsulating material (36). The method further includes forming contacts (20,44a) to the top plate (32) and bottom plate (28), through the encapsulating material (36). At least the contact (44a) to the top plate (32) and a contact (20) to a diffusion of the CMOS structure are in electrical connection through a common wire.