DUAL PORT GAIN CELL WITH SIDE AND TOP GATED READ TRANSISTOR
    11.
    发明申请
    DUAL PORT GAIN CELL WITH SIDE AND TOP GATED READ TRANSISTOR 审中-公开
    双端口增益单元与侧面和顶部读取晶体管

    公开(公告)号:WO2007023011B1

    公开(公告)日:2007-07-12

    申请号:PCT/EP2006063581

    申请日:2006-06-27

    CPC classification number: H01L27/108 H01L27/10829 H01L27/10867 H01L27/1203

    Abstract: A DRAM memory cell and process sequence for fabricating a dense (20 or 18 square) layout is fabricated with silicon-on-insulator (SOI) CMOS technology. Specifically, the present invention provides a dense, high-performance SRAM cell replacement that is compatible with existing SOI CMOS technologies. Various gain cell layouts are known in the art. The present invention improves on the state of the art by providing a dense layout that is fabricated with SOI CMOS. In general terms, the memory cell includes a first transistor provided with a gate, a source, and a drain respectively; a second transistor having a first gate, a second gate, a source, and a drain respectively; and a capacitor having a first terminal, wherein the first terminal of said capacitor and the second gate of said second transistor comprise a single entity.

    Abstract translation: 使用绝缘体上硅(SOI)CMOS技术制造用于制造致密(20或18平方)布局的DRAM存储单元和工艺顺序。 具体地,本发明提供了与现有SOI CMOS技术兼容的致密的高性能SRAM单元替换。 各种增益单元布局在本领域中是已知的。 本发明通过提供利用SOI CMOS制造的致密布局来改善现有技术的状态。 通常,存储单元包括分别设置有栅极,源极和漏极的第一晶体管; 分别具有第一栅极,第二栅极,源极和漏极的第二晶体管; 以及具有第一端子的电容器,其中所述电容器的第一端子和所述第二晶体管的第二栅极包括单个实体。

    METHOD FOR CONTROLLING DIFFUSION OF STRAP EMBEDDED IN TRENCH CAPACITOR

    公开(公告)号:JPH11330402A

    公开(公告)日:1999-11-30

    申请号:JP9246899

    申请日:1999-03-31

    Applicant: SIEMENS AG IBM

    Abstract: PROBLEM TO BE SOLVED: To reduce the diffusion of the height of an embedded strap by making the depression extending below the surface of the substrate in a filling material, to determine the top surface of a buried strap and by making a recess extending below the top surface of the embedded strap in a collar to determine the bottom side surface. SOLUTION: A substrate includes a partially completed trench capacitor. A collar 110 is made on the upper portion of the trench capacitor. A trench 108 is filled with a filling material 112 and the inner sidewall of the collar is lined with the filling material 112. A recess having a predetermined depth is made in the filling material 112. The depth of the recess actually determines the top portion of an embedded strap. A hole is made in the collar to the depth of 120 below the top surface 118 of the filling material 112. A layer 122 is removed from the side of the trench 108 and the top surface of a semiconductor device 100, while a recessed region 124 filled with the material of the layer 122 is left.

    SELF-LIMITING POLYSILICON BUFFERED LOCOS FOR DRAM TRENCH CAPACITOR COLLAR
    15.
    发明申请
    SELF-LIMITING POLYSILICON BUFFERED LOCOS FOR DRAM TRENCH CAPACITOR COLLAR 审中-公开
    用于DRAM TRENCH电容器COLLAR的自限制多晶硅缓冲电路

    公开(公告)号:WO0195391A8

    公开(公告)日:2002-03-28

    申请号:PCT/US0117927

    申请日:2001-06-01

    CPC classification number: H01L27/10861 H01L27/10867

    Abstract: A method of forming relatively thin uniform insulating collar in the storage trench of a storage trench DRAM cell. A DRAM trench is first formed in a silicon substrate. Then, a nitride liner (81) is deposited on the silicon trench walls. The nitride liner may be deposited directly on the silicon walls or on an underlying oxide layer (79). A layer of amorphous silicon (83) is then deposited over the nitride liner. A silicon nitride layer is deposited on the oxidized surface of the amorphous silicon. A resist (83) is formed in the lower portion of the trench, and the exposed silicon nitride layer on top of the amorphous silicon is removed, leaving the upper portion of the amorphous silicon layer exposed. The upper portion of the layer of amorphous silicon is then oxidized so as to form a relatively thin, uniform collar (89) along the entire circumference of the trench. The nitride liner underlying the amorphous silicon layer enhances the thickness uniformity of the amorphous silicon layer and thereby the uniformity of the resulting oxide collar. The nitride liner also acts to limit lateral oxidation of the silicon trench walls during oxidation of the amorphous silicon layer. The nitride liner underlying the collar is also effective in cell operation to control the cell charge at the collar-substrate interface.

    Abstract translation: 一种在存储沟槽DRAM单元的存储沟槽中形成相对薄的均匀绝缘环的方法。 首先在硅衬底中形成DRAM沟槽。 然后,氮化物衬垫(81)沉积在硅沟槽壁上。 氮化物衬垫可以直接沉积在硅壁上或下面的氧化物层(79)上。 然后在氮化物衬垫上沉积一层非晶硅(83)。 在非晶硅的氧化表面上沉积氮化硅层。 在沟槽的下部形成抗蚀剂(83),去除非晶硅顶部的露出的氮化硅层,使非晶硅层的上部露出。 然后,非晶硅层的上部被氧化,以便沿沟槽的整个圆周形成相对较薄的均匀的环(89)。 非晶硅层下面的氮化物衬垫增强了非晶硅层的厚度均匀性,从而提高了所得氧化物环的均匀性。 氮化物衬垫还用于在非晶硅层的氧化期间限制硅沟槽壁的横向氧化。 在套环下面的氮化物衬垫在电池操作中也有效地控制在衬套 - 衬底界面处的电池电荷。

    METHOD OF FORMING EMBEDDED SELF-ALIGNED STRAP IN DEEP STORAGE TRENCH, AND SEMICONDUCTOR DEVICE

    公开(公告)号:JP2000216354A

    公开(公告)日:2000-08-04

    申请号:JP2000005490

    申请日:2000-01-14

    Applicant: IBM SIEMENS AG

    Abstract: PROBLEM TO BE SOLVED: To provide a method for forming an embedded self-aligned strap in a deep storage trench. SOLUTION: A spacer 42/52 is formed on the wall face of a recess on an already filled deep trench capacitor 30. A plug 46/54 is formed within the region between spacers. A photoresist is stuck onto the spacer 42/54 and the plug 46/54 and a peripheral material 40, and a part of the plug 46/54, the spacer 42/52, and the material 40 is exposed. The spacer part not covered with the photoresist is selectively etched. A board and a trench part exposed by the removal of the spacer are selectively etched. An isolation region 58 is formed within the space made etching.

    DYNAMIC RANDOM ACCESS MEMORY AND MANUFACTURE OF THE SAME

    公开(公告)号:JP2000196045A

    公开(公告)日:2000-07-14

    申请号:JP37569999

    申请日:1999-12-28

    Abstract: PROBLEM TO BE SOLVED: To obtain necessary insulation between a capacitor for storage and a transistor in a memory cell, using both a capacitor for storage in a vertical trench and a vertical transistor. SOLUTION: One memory cell formed in a semiconductor main body 10 includes a polycrystalline silicon packing part 22 as a capacitor for storage and one field-effect transistor. This field-effect transistor includes a source 43 formed in the sidewall of a trench, a drain 42 formed in the semiconductor main body and provided with a surface in common with the upper face of the semiconductor main body, a channel region including both vertical and horizontal parts, and a polycrystalline silicon gate at the upper part of the trench. Thus, an insulating oxide layer 28 at the top end of the polycrystalline silicon packing part, which is useful as a storage node and the polycrystalline silicon packing part which is useful as a gate conductor can be obtained in this process for manufacturing.

    SEMICONDUCTOR DEVICE, AND FORMING OF LAYER UNIFORM IN FLATNESS AND THICKNESS

    公开(公告)号:JPH11176930A

    公开(公告)日:1999-07-02

    申请号:JP26992298

    申请日:1998-09-24

    Applicant: SIEMENS AG IBM

    Abstract: PROBLEM TO BE SOLVED: To provide a method for forming a layer which is uniform in flatness and thickness on a semiconductor chip or on a semiconductor device provided with a trench. SOLUTION: An oxide thermal pad layer 104 is formed on a semiconductor substrate 102 through a thermal oxidation method, a nitride insulating layer 106, a buffer layer 108 of oxide or preferably TEOS(tetraethyl oxosilane), and a SiN mask layer 110 are formed thereon through a CVD(chemical vapor deposition) method, and a hard mask layer 112 containing BSG(borosilicate glass) or TEOS is formed on the mask layer 110. Then, a semiconductor device is manufactured, a trench is provided to the device, filler is filled, a polishing is carried out up to a pad stop, and an etching operation is carried out using the buffer layer as an etching stopper for removing the pad stop and the buffer layer, whereby a surface layer which is nearly flat and uniform in thickness can be obtained.

    PATTERN FORMATION EMPLOYING SELF-ASSEMBLED MATERIAL
    20.
    发明申请
    PATTERN FORMATION EMPLOYING SELF-ASSEMBLED MATERIAL 审中-公开
    使用自组装材料的图案形成

    公开(公告)号:WO2009100053A2

    公开(公告)日:2009-08-13

    申请号:PCT/US2009032936

    申请日:2009-02-03

    Abstract: In one embodiment, hexagonal tiles encompassing a large are divided into three groups, each containing one-third of all hexagonal tiles that are disjoined among one another. Openings for the hexagonal tiles in each group (01, 02, 03) are formed in a template layer (2OA, 2OB, 20C), and a set of self-assembling block copolymers is applied and patterned within each opening. This process is repeated three times to encompass all three groups, resulting in a self-aligned pattern extending over a wide area. In another embodiment, the large area is divided into rectangular tiles of two non-overlapping and complementary groups. Each rectangular area has a width less than the range of order of self-assembling block copolymers. Self-assembled self- aligned line and space structures (4OA, 5OA; 4OB, 5OB; 4OC, 50C) are formed in each group in a sequential manner so that a line and space pattern is formed over a large area extending beyond the range of order.

    Abstract translation: 在一个实施例中,包括大的六边形瓦片被分成三组,每组包含彼此分离的所有六边形瓦片的三分之一。 每个组(01,02,03)中的六边形瓦片的开口形成在模板层(20A,20B,20C)中,并且在每个开口内施加和组合一组自组装嵌段共聚物。 该过程重复三次以包含所有三组,导致在大面积上延伸的自对准图案。 在另一个实施例中,大面积被分成两个不重叠和互补组的矩形瓦片。 每个矩形区域的宽度小于自组装嵌段共聚物的顺序范围。 在每组中以顺序的方式形成自组装自对准线和空间结构(40A,50A; 40B,50B; 40C,50C),使得线和空间图形形成在延伸超过 订购。

Patent Agency Ranking