Abstract:
A method for forming an oxide of substantially uniform thickness on at least two crystallographic planes of silicon, in accordance with the present invention, includes providing a substrate (step 100) where surfaces have at least two different crystallographic orientations of the silicon crystal (step 102). Atomic oxygen (O) is formed for oxidizing the surfaces (step 106). An oxide is formed (step 108) on the surfaces by reacting the atomic oxygen with the surfaces to simultaneously form a substantially uniform thickness of the oxide on the surfaces.
Abstract:
A method of forming relatively thin uniform insulating collar in the storage trench of a storage trench DRAM cell. A DRAM trench is first formed in a silicon substrate. Then, a nitride liner (81) is deposited on the silicon trench walls. The nitride liner may be deposited directly on the silicon walls or on an underlying oxide layer (79). A layer of amorphous silicon (83) is then deposited over the nitride liner. A silicon nitride layer is deposited on the oxidized surface of the amorphous silicon. A resist (83) is formed in the lower portion of the trench, and the exposed silicon nitride layer on top of the amorphous silicon is removed, leaving the upper portion of the amorphous silicon layer exposed. The upper portion of the layer of amorphous silicon is then oxidized so as to form a relatively thin, uniform collar (89) along the entire circumference of the trench. The nitride liner underlying the amorphous silicon layer enhances the thickness uniformity of the amorphous silicon layer and thereby the uniformity of the resulting oxide collar. The nitride liner also acts to limit lateral oxidation of the silicon trench walls during oxidation of the amorphous silicon layer. The nitride liner underlying the collar is also effective in cell operation to control the cell charge at the collar-substrate interface.
Abstract:
A method of forming a vertically-oriented device such as a DRAM storage all with a trench capacitor under a vertical transistor, using a selective wet etch to remove only a part of the sidewalls in a deep trench, and the device formed therefrom. While a poertion of the trench perimeter (e.g., isolation collar 304) is protected by a mask (e.g., polysilicon 318), the exposed portion is selectively wet etched to remove selected crystal planes from the exposed portion of the trench, leaving a flat substrate sidewall (324) with a single crystal plane. A single side vertical trench transistor may be formed on the flat sidewall. A vertical gate oxide (e.g. silicon dioxide 330) of the transistor formed on the single crystal plane is substantially uniform across the transistor channel, providing reduced chance of leakage and consistent threshold voltages from device to device. In addition, trench widening is substantially reduced, increasing the device to device isolation distance in a single sided buried strap junction device layout.
Abstract:
A method of doping trench sidewall and hemispherical-grained silicon in deep trench cells to increase surface area and storage capacitance while avoiding deformation of trenches and hemispherical-grained silicon, comprising: a) Etching a deep trench structure by reactive ion etching; b) Forming a LOCOS collar in an upper portion of the trench over a conformal layer of a silicon containing material, the collar leaving a lower portion of the trench exposed; c) Depositing a film of hemispherical-grained silicon (HSG -Si) at sidewalls of the deep trench; d) Plasma doping the hemispherical-grained silicon; and e) Depositing a node dielectric and filling the trench with polysilicon.
Abstract:
A method of using a selective etch to provide a desired crystal plane orientation on the sidewalls of a deep trench located in a semiconductor substrate, and the device formed therefrom. Preferably, a crystal plane sidewall (212) is used for the channel region, and crystal planes (216) are used in the corner regions of the trench. Gate oxidation may then be performed such that the oxide is thicker in the corner regions (222) than on the oxide (218, 220) on the primary sides of the trench, resulting in self isolation of the corner areas from the transistor channel/active area (224). In addition, the structure is relatively insensitive to active area/deep trench misalignment.
Abstract:
A system and method of forming an electrical connection (142) to the interior of a deep trench (104) in an integrated circuit utilizing a low-angle dopant implantation (114) to create a self-aligned mask over the trench. The electrical connection preferably connects the interior plate (110) of a trench capacitor to a terminal of a vertical trench transistor. The low-angle implantation process, in combination with a low-aspect ratio mask structure, generally enables the doping of only a portion of a material overlying or in the trench. The material may then be subjected to a process step, such as oxidation, with selectivity between the doped and undoped regions. Another process step, such as an etch process, may then be used to remove a portion of the material (120) overlying or in the trench, leaving a self-aligned mask (122) covering a portion of the trench, and the remainder of the trench exposed for further processing. Alternatively, an etch process alone, with selectivity between the doped and undoped regions, may be used to create the mask. The self-aligned mask then allows for the removal of selective portions of the materials in the trench so that a vertical trench transistor and a buried strap may be formed on only one side of the trench.
Abstract:
A method of using at least two insulative layers to form the isolation collar of a trench capacitor, and the device formed therefrom. The first layer is preferably an oxide (e.g., silicon dioxide 116) formed on the trench substrate sidewalls, and is formed through a TEOS, LOCOS, or combined TEOS/LOCOS process. Preferably, both the TEOS process and the LOCOS process are used to form the first layer. The second layer is preferably a silicon nitride layer (114) formed on the oxide layer. The multiple layers function as an isolation collar stack for the trench. The dopant penetration barrier properties of the second layer permit the dielectric collar stack to be used as a self aligned mask for subsequent buried plate (120) doping.
Abstract:
Improved process for preparing vertical transistor structures in DRAMs, in which the trench top oxide separates the bottom storage capacitor from the switching transistor, and in which the upper part of the trench contains the vertical transistor at its side wall, to obtain homogeneous gate oxidation at all different crystal planes inside the trench so that homogeneous thickness is independent of crystal orientation comprising: a) subjecting a wafer trench side wall to ion bombardment (20) for a period sufficient to generate an amorphous layer (22) on the side wall; and b) heating the wafer resulting from step (a) in an oxidizing atmosphere to cause oxidation and recrystallization of the amorphous layer.
Abstract:
A method of manufacturing a capacitor is provided where at least a portion of a silicon surface is amorphized. The amorphized silicon surface is then subjected to an annealing process to form hemispherical silicon grains (HSG) from the amorphized portion of the silicon surface to form at least a portion of a first electrode of the capacitor. A capacitor dielectric is then formed over the hemispherical silicon grains. A second electrode is then formed over the capacitor dielectric.
Abstract:
In a process for making a DT DRAM structure, the improvement of providing a surface area enhanced DT below the collar region and node capacitance that does not shrink with decreasing groundrule/cell size, comprising:a) providing a semiconductor substrate having a collar region and an adjacent region below the collar region, the collar region having SiO deposited thereon;b) depositing a SiN liner on said collar region and on the region below the collar;c) depositing a layer of a-Si on the SiN liner to form a micromask;d) subjecting the structure from step c) to an anneal/oxidation step under a wet environment at a sufficient temperature to form a plurality of oxide dot hardmasks;e) subjecting the SiN liner to an etch selective to SiO;f) subjecting the structure from step e) to a Si transfer etch using a chemical dry etch (CDE) selective to SiO to create rough Si surface;g) stripping SiO and the SiN; and forming a node and collar deposition.