Abstract:
A method and an arrangement for reducing a contact resistance of a two-dimensional crystal material are provided. An example method may include forming a contact material layer on a two-dimensional crystal material layer; performing ion implantation; and performing thermal annealing.
Abstract:
A method for monolithic integration of a hyperspectral image sensor is provided, which includes: forming a bottom reflecting layer on a surface of the photosensitive region of a CMOS image sensor wafer; forming a transparent cavity layer composed of N step structures on the bottom reflecting layer through area selective atomic layer deposition processes, where N=2m, m≧1 and m is a positive integer; and forming a top reflecting layer on the transparent cavity layer. With the method, non-uniformity accumulation due to etching processes in conventional technology is minimized, and the cavity layer can be made of materials which cannot be etched. Mosaic cavity layers having such repeated structures with different heights can be formed by extending one-dimensional ASALD, such as extending in another dimension and forming repeated regions, which can be applied to snapshot hyperspectral image sensors, for example, pixels, and greatly improving performance thereof.
Abstract:
A method for preparing a TiAl alloy thin film, wherein a reaction chamber is provided, in which at least one substrate is placed; an aluminum precursor and a titanium precursor are introduced into the reaction chamber, wherein the aluminum precursor has a molecular structure of a structural formula (I); and the aluminum precursor and the titanium precursor are brought into contact with the substrate so that a titanium-aluminum alloy thin film is formed on the surface of the substrate by vapor deposition. The method solves the problem of poor step coverage ability and the problem of incomplete filling with regard to the small-size devices by the conventional methods. Meanwhile, the formation of titanium-aluminum alloy thin films with the aid of plasma is avoided so that the substrate is not damaged by plasma.
Abstract:
A method for manufacturing a semiconductor device, comprising: forming a gate trench on a substrate; forming a gate dielectric layer and a metal gate layer thereon in the gate trench; forming a first tungsten (W) layer on a surface of the metal gate layer, and forming a tungsten nitride (WN) blocking layer by injecting nitrogen (N) ions; and filling with W through an atomic layer deposition (ALD) process. The blocking layer prevents ions in the precursors from aggregating on an interface and penetrating into the metal gate layer and the gate dielectric layer. At the same time, adhesion of W is enhanced, a process window of W during planarization is increased, reliability of the device is improved and the gate resistance is further reduced.
Abstract:
A planarization process, the process including performing first sputtering on a material layer, with an area of the material layer which has a relatively low loading condition for sputtering shielded by a first shielding layer, removing the first shielding layer, and performing second sputtering on the material layer to planarize the material layer.