13.
    发明专利
    未知

    公开(公告)号:DE69924439D1

    公开(公告)日:2005-05-04

    申请号:DE69924439

    申请日:1999-09-14

    Abstract: Instead of trying to keep the SLs of a QC laser field free, we "pre-bias" the actual electronic potential by varying the SL period (and hence average composition) so as to achieve an essentially flat profile, on average, of upper and lower minibands, despite the presence of an applied field in the SLs. In one embodiment, in at least a first subset of the QW layers, the thicknesses of the QW layers are varied from QW layer to QW layer so as to increase in the direction of the applied field. In this embodiment, the upper and lower lasing levels are located, in the absence of an applied electric field, each at different energies from layer to layer within the first subset, so that despite the presence of an applied field, the desired flatband condition of the upper and lower minibands is realized. In a preferred embodiment, the thicknesses of the QW layers within the first subset are varied from QW layer to QW layer so as to increase in the direction of the applied field, and the thicknesses of a second subset of the barrier layers are also varied from barrier layer to barrier layer so as to decrease or increase in the direction of the applied field.

    14.
    发明专利
    未知

    公开(公告)号:DE69923890D1

    公开(公告)日:2005-04-07

    申请号:DE69923890

    申请日:1999-07-20

    Abstract: A long wavelength (e.g., mid-IR to far-IR) semiconductor laser comprises an active region and at least one cladding region characterized in that the cladding region includes a light guiding interface between two materials which have dielectric constants opposite in sign. Consequently, the guided modes are transverse magnetic polarized surface waves (i.e., surface plasmons) which propagate along the interface without the need for a traditional dielectric cladding. In a preferred embodiment, the interface is formed between a semiconductor layer and a metal layer. The complex refractive index of the metal layer preferably has an imaginary component which is much larger than its real component. In an illustrative embodiment, our laser includes a Quantum cascade active region sandwiched between a pair of cladding regions one of which is a guiding interface based on surface plasmons and the other of which is a dielectric (e.g., semiconductor) structure.

Patent Agency Ranking