Abstract:
An impedance matching network is integrated on a first die and coupled to a second die, with the first and second dies mounted on a conductive back plate. The impedance matching network comprises a first inductor bridging between the first and second dies, a second inductor coupled to the first inductor and disposed on the first die, and a metal-insulator-metal (MIM) capacitor disposed on the first die. The MIM capacitor has a first metal layer coupled to the second inductor, and a second metal layer grounded to the conductive back plate. A method for manufacturing the integrated impedance matching network comprises the steps of forming an inductor on a die, forming a capacitor on the die, coupling the capacitor to the inductor, coupling the die bottom surface and the capacitor to a conductive plate, and coupling the inductor to another inductor that bridges between the die and another die.
Abstract:
A radio frequency (“RF”) circuit configured in accordance with an embodiment of the invention is fabricated on a substrate using integrated passive device (“IPD”) process technology. The RF circuit (which may be, for example, a harmonic filter) includes at least one RF signal line section and an integrated RF coupler located proximate to the RF signal line section. The integrated RF coupler, its output and grounding contact pads, and its matching network are fabricated on the same substrate using the same IPD process technology. The integrated RF coupler provides efficient and reproducible RF coupling without increasing the die footprint of the RF circuit.
Abstract:
A chuck method of and apparatus (50, 150, 300) for supporting a substrate (W) during processing of the substrate, where the substrate has a lower surface (WL). The apparatus facilitates heat transfer away from the substrate during processing of the substrate. The apparatus comprises a chuck body (60) having an outer edge (70) and a rough upper surface (64U). The substrate is arranged adjacent the rough surface such that the substrate lower surface and the roughened upper surface form a gap (100) therebetween. The apparatus further includes a central gas conduit (80) passing through the chuck body. The central conduit has a second end (82b) open to the roughened upper surface and a first end opposite the second end connected to a gas source (86). The conduit is arranged such that a gas can flow through the conduit into the gap and toward the chuck body outer edge. The gas used has an atomic or molecular weight that is greater than that of helium. The surface roughness, the substrate lower surface and the flow of the heavier gas in the gap contribute to defining an accommodation coefficient α and a mean free path λ such that the ratio α/λ is higher than that of prior art apparatus.
Abstract translation:一种用于在基板的处理期间支撑基板(W)的卡盘方法和装置(50,150,300),其中所述基板具有下表面(W L L L)。 该设备有助于在衬底处理期间从衬底传热。 该装置包括具有外边缘(70)和粗糙上表面(64U)的卡盘主体(60)。 衬底布置成与粗糙表面相邻,使得衬底下表面和粗糙化的上表面之间形成间隙(100)。 该装置还包括通过卡盘主体的中心气体导管(80)。 中心导管具有通向粗糙化的上表面的第二端(82b)和与气源(86)连接的第二端相对的第一端。 管道布置成使得气体可以通过导管流入间隙并朝向卡盘主体外边缘流动。 所使用的气体的原子或分子量大于氦气。 间隙中的表面粗糙度,底物下表面和较重气体的流动有助于确定适应系数α和平均自由程λ,使得比率α/λ比现有技术装置高。
Abstract:
A method and apparatus for plasma cleaning a workpiece (W) in a plasma-cleaning chamber (20) having an interior region (30). The method comprises the steps of first, loading the workpiece into the plasma cleaning chamber interior region. The next step is pumping down the plasma cleaning chamber interior region down to a pre-determined pressure, with hydrogen as the ambient gas. The next step is forming from the hydrogen gas a plasma (36) having an ion density in the range between 1010 and 1013 cm−3 and an ion energy lower than 30 eV The last step is exposing the workpiece to the plasma for a predetermined time. The apparatus of the present invention preferably includes first and second vacuum processing chambers (20 and 120), wherein the first chamber performs the plasma cleaning of the workpiece according to the method of the invention, and the second chamber performs an additional process step, e.g., depositing a metal.
Abstract:
A magnitude and direction of at least one of a reset current and a second stabilization current (that produces a reset field and a second stabilization field, respectively) is determined that, when applied to an array of magnetic sense elements, minimizes the total required stabilization field and reset field during the operation of the magnetic sensor and the measurement of the external field. Therefore, the low field sensor operates optimally (with the highest sensitivity and the lowest power consumption) around the fixed external field operating point. The fixed external field is created by other components in the sensor device housing (such as speaker magnets) which have a high but static field with respect to the low (earth's) magnetic field that describes orientation information.
Abstract:
A method (60) entails providing a substrate (34) with a structural layer (30) having a thickness (40). A partial etch process is performed at locations (82) on the structural layer (30) so that a portion (92) of the structural layer (30) remains at the locations (82). An oxidation process is performed at the locations which consumes the remaining portion of the structural layer and forms an oxide (36) having a thickness (42) that is similar to the thickness (40) of the structural layer (30). The oxide (36) electrically isolates microstructures (28) in the structural layer (30), thus producing a structure (22). A device substrate (120) is coupled to the structure (22) such that a cavity (48) is formed between them. An active region (44) is formed in the device substrate (120). A short etch process can be performed to expose the microstructures from an overlying oxide layer (110).
Abstract:
A micro or nano electromechanical transducer device formed on a semiconductor substrate comprises a movable structure which is arranged to be movable in response to actuation of an actuating structure. The movable structure comprises a mechanical structure having at least one mechanical layer having a first thermal response characteristic, at least one layer of the actuating structure having a second thermal response characteristic different to the first thermal response characteristic, and a thermal compensation structure having at least one thermal compensation layer. The thermal compensation layer is different to the at least one layer and is arranged to compensate a thermal effect produced by the mechanical layer and the at least one layer of the actuating structure such that the movement of the movable structure is substantially independent of variations in temperature.
Abstract:
An integrated inertial sensor and pressure sensor may include a first substrate including a first surface and a second surface; at least one or more conductive layers, formed on the first surface of the first substrate; a movable sensitive element, formed by using a first region of the first substrate; a second substrate and a third substrate, the second substrate being coupled to a surface of the conductive layer, the third substrate being coupled to the second surface of the first substrate in which the movable sensitive element of the inertial sensor is formed, and the third substrate and the second substrate are respectively arranged on opposite sides of the movable sensitive element; and a sensitive film of the pressure sensor, including at least a second region of the first substrate, or including at least one of the conductive layers on the second region of the first substrate.
Abstract:
A method of forming an electromechanical transducer device comprises forming on a fixed structure a movable structure and an actuating structure of the electromechanical transducer device, wherein the movable structure is arranged in operation of the electromechanical transducer device to be movable in relation to the fixed structure in response to actuation of the actuating structure. The method further comprises providing a stress trimming layer on at least part of the movable structure, after providing the stress trimming layer, releasing the movable structure from the fixed structure to provide a released electromechanical transducer device, and after releasing the movable structure changing stress in the stress trimming layer of the released electromechanical transducer device such that the movable structure is deflected a predetermined amount relative to the fixed structure when the electromechanical transducer device is in an off state.
Abstract:
A device comprises a conductive substrate, a micro electromechanical systems (MEMS) structure, and a plurality of bond pads. The conductive substrate has a first side and a second side, the second side opposite the first side. The MEMS structure is formed over the first side of the conductive substrate. The plurality of bond pads are formed over the first side of the conductive substrate and electrically coupled to the first side of the conductive substrate. The conductive substrate and plurality of bond pads function to provide electrostatic shielding to the MEMS structure.