FLEXIBLE PRESSURE-SENSING DEVICE AND PROCESS FOR ITS FABRICATION
    12.
    发明申请
    FLEXIBLE PRESSURE-SENSING DEVICE AND PROCESS FOR ITS FABRICATION 审中-公开
    柔性压力感应装置及其制造方法

    公开(公告)号:WO2015190910A1

    公开(公告)日:2015-12-17

    申请号:PCT/MY2015/000046

    申请日:2015-06-08

    Applicant: MIMOS BERHAD

    CPC classification number: G01L1/20 B81B3/0021 B81B2201/0264 G01L1/18

    Abstract: A pressure-sensing device (10) and a process for fabricating it is disclosed. In a preferred embodiment, a sacrificial oxide layer (11 ) is first formed onto a silicon substrate (30). A bottom polymer film (14) is then formed on oxide layer (11 ). Conductive elements including electrodes (12a, 12b) and/or contact pads (18a, 18b) are formed on the bottom polymer film (14). A graphene sheet (20) is deposited to electrically connect the electrodes (12a, 12b). A top polymer film (16) is then laid on top so that the conductive elements (12, 18) and graphene (20) are sandwiched and encapsulated in between the top and bottom polymer layers (14, 16) chosen from polyimide or poly dimethylsiloxane (PDMS). Openings (19a, 19b) on top polymer layer (16) may optionally be provided to allow for interconnection of the contact pads (18a, 18b). The sacrificial oxide (11 ) is then etched to release the completed device (10) from the substrate (30) which may be reused.

    Abstract translation: 公开了一种压力感测装置(10)及其制造方法。 在优选实施例中,首先在硅衬底(30)上形成牺牲氧化物层(11)。 然后在氧化物层(11)上形成底部聚合物膜(14)。 在底部聚合物膜(14)上形成包括电极(12a,12b)和/或接触焊盘(18a,18b)的导电元件。 沉积石墨烯片(20)以电连接电极(12a,12b)。 然后将顶部聚合物膜(16)放置在顶部上,使得导电元件(12,18)和石墨烯(20)被夹持并包封在选自聚酰亚胺或聚二甲基硅氧烷的顶部和底部聚合物层(14,16)之间 (PDMS)。 可以可选地设置顶部聚合物层(16)上的开口(19a,19b)以允许接触焊盘(18a,18b)的互连。 然后蚀刻牺牲氧化物(11)以将完成的装置(10)从可以重复使用的基板(30)释放。

    AN ETCH-FREE METHOD FOR CONDUCTIVE ELECTRODE FORMATION
    13.
    发明申请
    AN ETCH-FREE METHOD FOR CONDUCTIVE ELECTRODE FORMATION 审中-公开
    一种无电导体电极形成方法

    公开(公告)号:WO2015170958A1

    公开(公告)日:2015-11-12

    申请号:PCT/MY2015/000026

    申请日:2015-04-29

    Applicant: MIMOS BERHAD

    Abstract: The present invention provides an etch-free method for conductive electrode formation. The method comprises depositing an insulating layer (104) on a substrate (102), spin coating a first polymer layer (106) on the substrate (102), patterning the first polymer layer (106) by photo-lithography and depositing a conductive metal layer by physical deposition to form a top metallic layer (108) and a bottom metallic layer (110).

    Abstract translation: 本发明提供了一种用于导电电极形成的无蚀刻方法。 该方法包括在衬底(102)上沉积绝缘层(104),在衬底(102)上旋涂第一聚合物层(106),通过光刻法图案化第一聚合物层(106)并沉积导电金属 层,通过物理沉积形成顶部金属层(108)和底部金属层(110)。

    A SELF-CALIBRATED MINIATURIZED PRESSURE SENSOR
    14.
    发明申请
    A SELF-CALIBRATED MINIATURIZED PRESSURE SENSOR 审中-公开
    自校准微型压力传感器

    公开(公告)号:WO2015170957A1

    公开(公告)日:2015-11-12

    申请号:PCT/MY2015/000022

    申请日:2015-04-22

    CPC classification number: G01L27/002 G01L9/0075

    Abstract: The present invention relates to pressure sensor and more particularly self-calibrated miniaturized pressure sensor designed for monitoring applications in automotive, industrial, medical and consumer products. One of the advantages of the present invention is able to detect self-calibration of the pressure sensor at both the initial state of the device or during operation. Another advantage of the present invention is that the self-calibrated miniaturized pressure sensor of the present invention enables the user to know the exact condition of the deformed diaphragm structure to ensure that the measured results are representative of the actual applied external pressure instead of the internal mechanical failure of the diaphragm structure. The present invention further provides a considerable reduction of materials with even greater efficiency and economically during operation.

    Abstract translation: 本发明涉及压力传感器,特别是自校准的小型化压力传感器,用于监测汽车,工业,医疗和消费产品中的应用。 本发明的优点之一是能够在设备的初始状态或操作期间检测压力传感器的自校准。 本发明的另一个优点是,本发明的自校准的小型压力传感器使得用户能够知道变形的隔膜结构的确切状况,以确保测量结果代表实际施加的外部压力而不是内部的 隔膜结构的机械故障。 本发明进一步提供了在操作期间具有更高效率和经济性的材料的显着减少。

    A PRESSURE SENSOR WITH MAGNETIC NANOPARTICLES
    15.
    发明申请
    A PRESSURE SENSOR WITH MAGNETIC NANOPARTICLES 审中-公开
    具有磁性纳米粒子的压力传感器

    公开(公告)号:WO2015080548A1

    公开(公告)日:2015-06-04

    申请号:PCT/MY2014/000113

    申请日:2014-05-26

    Applicant: MIMOS BERHAD

    CPC classification number: G01L9/0055

    Abstract: The present invention relates to a piezoresistive pressure sensor which detects applied pressure by measuring the change of electrical conductivity of the magnetic nanoparticles (3) in response to the application of mechanical stress onto the diaphragm (1). The pressure sensor comprises conductive electrodes (2) formed on the diaphragm (1) which is provided on a substrate (4). Magnetic nanoparticles (3) are deposited on the conductive electrodes (2) for electrically connecting the conductive electrodes (2) and changing electrical conductivity when stress is applied.

    Abstract translation: 压阻式压力传感器本发明涉及一种压阻式压力传感器,其通过测量磁性纳米颗粒(3)响应于在膜片(1)上施加机械应力的电导率的变化来检测施加的压力。 压力传感器包括形成在隔膜(1)上的设置在基板(4)上的导电电极(2)。 在导电电极(2)上沉积磁性纳米颗粒(3),用于电连接导电电极(2),并在施加应力时改变电导率。

    CANTILEVER MICROVALVE STRUCTURE AND METHOD OF FABRICATING SAME
    17.
    发明申请
    CANTILEVER MICROVALVE STRUCTURE AND METHOD OF FABRICATING SAME 审中-公开
    CANTILEVER微型结构及其制造方法

    公开(公告)号:WO2011008070A1

    公开(公告)日:2011-01-20

    申请号:PCT/MY2010/000117

    申请日:2010-07-12

    CPC classification number: F16K99/0001 F16K99/0013 F16K99/0057 F16K2099/008

    Abstract: A passive microvalve actuated by the deformation of the microvalve structure (20) (such as bending and rotation) due to fluid pressure exerted is disclosed. The deformation of the valve structure (20) directs fluid flow to a desired pathway and reduce occurrence of dead volume. A basic embodiment of our microvalve is comprised in a semiconductor-fabricated body (10) regulating fluid flow between at least a first channel (12) and a second channel (14) in a passive manner, with the microvalve fabricated as an integral cantilever structure (20) comprising a stem (22) with base (24) rigidly affixed to a substrate (15); and at least a lever arm (26) extending at about tangentially from distal end of the stem (22), forming an elbow (28) thereat. The cantilever structure (20) may comprise of any one of L-shape or T-shape structure formed via MEMS processes, particularly surface micromachining (SMM) processes so that our proposed valve may be fabricated cost-effectively, robust and easily integrated into semiconductor devices.

    Abstract translation: 公开了由于施加的流体压力而由微型阀结构(20)的变形(例如弯曲和旋转)致动的被动微型阀。 阀门结构(20)的变形将流体流引导到期望的通道并减少死体积的发生。 我们的微型阀的基本实施例包括在以被动方式调节至少第一通道(12)和第二通道(14)之间的流体流动的半导体制造体(10)中,微型阀被制造为整体式悬臂结构 (20)包括具有刚性地固定到基底(15)的基部(24)的杆(22); 以及至少一个杠杆臂(26),其在所述杆(22)的远端的大致切线处延伸,在其上形成肘部(28)。 悬臂结构(20)可以包括通过MEMS工艺,特别是表面微加工(SMM)工艺形成的L形或T形结构中的任何一个,使得我们提出的阀可以经济有效地,鲁棒地并且容易地集成到半导体中 设备。

    A METHOD FOR PREPARING A GRAPHENE-BASED INKJET INK

    公开(公告)号:WO2021133161A1

    公开(公告)日:2021-07-01

    申请号:PCT/MY2020/050142

    申请日:2020-11-10

    Applicant: MIMOS BERHAD

    Abstract: The present invention relates to a method for preparing a graphene-based inkjet ink characterised by the steps of: exfoliating graphene oxide (GO) in deionised water at 25 - 30°C (100); reducing the GO and silver nitrate (AgNOs) at 25°C to 30°C to form a reduced GO (rGO) and silver (Ag) mixture (200); reacting the rGO and Ag mixture to form a rGO/Ag nanoparticles (rGO/Ag-NPs) mixture (300) without agitation at 25°C to 30°C; sonicating the rGO/Ag-NPs mixture (400) at 65°C to 68°C; centrifuging the rGO/Ag-NPs mixture to produce the graphene- based colloidal solution (500); and dispersing the graphene-based colloidal solution in a dispersant solution to produce the graphene-based inkjet ink (600).

    ISFET INTEGRATED WITH A MICRO-HEATER AND FABRICATION METHOD THEREOF
    20.
    发明申请
    ISFET INTEGRATED WITH A MICRO-HEATER AND FABRICATION METHOD THEREOF 审中-公开
    ISFET集成微加热器及其制造方法

    公开(公告)号:WO2015178754A1

    公开(公告)日:2015-11-26

    申请号:PCT/MY2015/000032

    申请日:2015-05-13

    Applicant: MIMOS BERHAD

    CPC classification number: G01N27/414

    Abstract: The present invention relates to an ISFET integrated with a heating element, particularly a micro-heater, for gas sensing application. A method for fabricating the ISFET with the micro-heater is also disclosed in the present invention. By using the method of the present invention, the ISFET with the micro-heater has optimum performance and detection sensitivity to its environment changes, while reducing potential damage on the sensing membrane element. Furthermore, the configuration of the ISFET which includes at least two silicon substrates enables the fabrication of the ISFET device with the micro-heater to be more effective, leaves no air gap, and does not block the micro-heater and the sensing membrane element during detection. Thus, the sensing membrane element and the micro-heater are fully exposed the change of its environment.

    Abstract translation: 本发明涉及与用于气体传感应用的加热元件,特别是微加热器集成的ISFET。 本发明还公开了一种用微加热器制造ISFET的方法。 通过使用本发明的方法,具有微加热器的ISFET具有对其环境变化的最佳性能和检测灵敏度,同时减少了对传感膜元件的潜在损害。 此外,包括至少两个硅衬底的ISFET的配置使得能够利用微加热器制造具有微加热器的ISFET器件更有效,不留空气隙,并且不会阻塞微加热器和感测膜元件 检测。 因此,感测膜元件和微加热器完全暴露其环境的变化。

Patent Agency Ranking