Abstract:
A turbine engine component has a substrate, a thermal barrier layer deposited onto the substrate, and a sealing layer of ceramic material deposited on an outer surface of the thermal barrier layer for limiting molten sand penetration. The thermal barrier layer and sealing layer are formed by suspension plasma spraying. A preferred sealing layer is gadolinium zirconate.
Abstract:
A coating system for coating a part (10), such as a turbine blade or vane, has a mask (14) positioned adjacent to a first portion (16) of the part (10) to be coated and a mechanism (30) for moving the mask (14) relative to the part (10). The mechanism (30) may be a gear mechanism or a magnetic mechanism.
Abstract:
A thermal barrier coating for a turbine engine component contains neodymia, optionally alumina, and zirconia. The thermal barrier coating has resistance to CMAS attack and a low thermal conductivity.
Abstract:
A process for coating a part comprises the steps of providing a chamber which is electrically connected as an anode, placing the part to be coated in the chamber, providing a cathode formed from a coating material to be deposited and platinum, and applying a current to the anode and the cathode to deposit the coating material and the platinum on the part.
Abstract:
A thermal barrier coating comprising from 0.5 to 22.0 mol% of CeO2, and from 0.5 to 22.0 mol% of at least one first oxide selected from the group consisting of La2O3, Sm2O3, Th203, Tm2O3, Ho2O3, Lu2O3, MgO, CaO, Pr2O3, Nd2O3, Eu2O3, Gd2O3, Dy2O3, Er2O3, Yb203, and mixtures thereof, combined with a second oxide selected from the group consisting of zirconia and hafnia, and said CeO2 and said at least one first oxide being present in an amount not greater than 22.5 mol%.
Abstract:
THERMAL BARRIER COATINGS WITH LOW THERMAL CONDUCTIVITY A thermal barrier coating comprising from 15.0 to 22.5 mol% of a first oxide selected from the group consisting of Dy2O3 and Yb2O3 combined with at least 77.5 mol% of a second oxide selected from the group consisting of zirconia, hafnia, and ceria.
Abstract:
A process of coating an article includes the steps of (1) applying a ceramic based compound to at least one surface of an article to form a layer of ceramic based compound; (2) applying at least one inert compound upon the ceramic based compound layer to form a protective layer, wherein the at least one inert compound is composed of a first inert compound having a cubic crystalline structure of formula (I) A 3 B 2 X 3 O 12 , or a second inert compound comprising a hexagonal crystalline structure of formula (II) A 4 B 6 X 6 O 26 , or a mixture of the first inert compound and the second inert compound; and (3) heat treating the coated article.