Abstract:
Embodiments of the present disclosure generally relate to apparatus and methods for preventing power dips associated with power ramping in wind turbines. One embodiment of the present disclosure provides a method for stabilizing power output in a wind turbine, which includes tracking a rate of change in an external reference, such as an external power reference or external torque reference, computing a feed-forward pitch angle adjustment according to the rate of change in the external power reference, and sending the feed-forward pitch angle adjustment to the wind turbine to adjust a pitch angle of rotor blades simultaneously with adjusting power output according to the external reference.
Abstract:
To efficiently run a wind turbine in varying wind speeds, the wind turbine may be configured to switch between two different electrical configurations that offer different efficiencies depending on wind speed. For example, a star configuration may be preferred during low wind speeds while a delta configuration is preferred for high wind speeds. Before switching, the power output by the turbine's generator may be driven to zero. Doing so, however, removes load from the rotor blades which cause the rotor speed to increase. Instead, the rotor speed may be controlled such that the speed stays at or above the speed of the rotor immediately before the generator power is ramped down. Maintaining rotor speed at or slightly above the current speed while switching between electrical configurations may mitigate the torque change experienced by the turbine and reduce the likelihood of structural failure.
Abstract:
A method of controlling a wind turbine is described. The method involves forecasting the temperature evolution of a component of the wind turbine based upon the current operating parameters of the wind turbine and upon a required power output; predicting from the temperature forecast a future alarm event caused by the temperature of the component exceeding a first threshold level or falling below a second threshold level; and adjusting the operating parameters of the wind turbine to control the temperature evolution of the component thereby to avoid or delay the predicted alarm event.
Abstract:
Embodiments are generally directed to techniques for operating a wind turbine of a wind power plant. An associated method comprises determining, using one or more sensors of the wind turbine, a first power production level of the wind turbine; determining, during an unconstrained operation of the wind turbine, one or more available power correction factors using the first power production level; determining, using one or more wind power parameters applied to a predefined model for estimating an available power of the wind turbine, an estimated available power value; adjusting the estimated available power value using the one or more available power correction factors to produce the available power value; and controlling, using the available power value, the wind turbine to produce a second power production level.
Abstract:
The invention relates to a method for controlling a wind turbine to change a power reference Pref from a first power level to a second power level dependent on a comparison of a grid frequency f with a frequency threshold fT. In order to enable fast changes of the power reference Pref in case of a relatively large deviation of the grid frequency relative to the nominal grid frequency, a power ramp rate allowing a fast change of the power reference may be set if the grid frequency is greater than the frequency threshold.
Abstract:
There is provided a method for controlling a hydraulic pitch force system (220) so as to reduce or eliminate a decrease in hydraulic oil pressure (241) if a hydraulic system parameter value is outside a hydraulic system parameter range, the method comprising: Obtaining (690) the hydraulic system parameter value, and operating the hydraulic pitch force system (220) according to a reduced mode (692) if the hydraulic system parameter value is outside the hydraulic system parameter range, wherein in the reduced mode one or more pitch based activities are reduced (694) or suspended. An advantage thereof may be that it enables keeping the wind turbine in production in certain instances rather than shutting down the wind turbine. In aspects, there is furthermore presented a computer program product, a pitch control system (250) and a wind turbine (100).
Abstract:
A method, control arrangement, and wind power plant (WPP) comprising a plurality of wind turbine generators (WTGs)are disclosed. The method includes operating, responsive to a received power demand corresponding to the WPP, a boost group of one or more WTGs of the plurality of WTGs to begin producing a boosted power output, wherein the boosted power output of each of the one or more WTGs of the boost group is regulated independent of the power demand. The method further includes determining, based on a measured amount of boosted power production, power production set points for a regulation group of one or more different WTGs of the plurality of WTGs to thereby meet the power demand.
Abstract:
The present invention relates to a method for controlling a wind turbine, the wind turbine comprises a rotor connected to a generator, and a rotational speed controller configured to control a speed of the rotor in response to a generator speed reference, and a power controller to control an electric power production, the method comprises the step for receiving a boost command to request a power boost event, so to increase the electrical power production, and imposing a dead band with a dead zone value limit to the rotational speed controller, and wherein the dead band imposes a zero signal to be send to the rotational speed controller, when a speed error is within the dead zone value limit and wherein the dead band imposes an error signal to be send to the rotational speed controller, when a speed error is greater than the dead zone value limit, the error signal being a function of the speed error and the dead zone value limit. The invention also relates to a wind power plant comprising a power plant controller and at least one wind turbine with a control system according to the above mentioned method. Fig. 3 to accompany abstract
Abstract:
The present invention relates to control of the power output of wind turbine generator that operates in derated mode to generate a produced power output level lower than an available power level. A pitch system 48 sets the blade pitch of a rotor to a pitch value based on the received power reference signal 40. A power system 43 controls the produced power output power level of the wind turbine to the requested power output level. Moreover, the blade pitch of the rotor is further controlled by a pitch feedback control loop 47 that modifies the pitch value based on a difference between the produced power output level 46 and the requested power output level 40.
Abstract:
According to an aspect of the invention, a wind farm is provided. The wind farm includes a plurality of wind turbines and a wind farm controller. The controller is configured to detect a high wind condition from at least one wind turbine in the wind farm, reduce a parameter setpoint of at least one other wind turbine, and increase a cut-out wind speed threshold of the at least one other wind turbine.