Abstract:
Methods of making functionalized support material are disclosed. Functionalized support material suitable for use in chromatography columns or cartridges, such as in a high pressure liquid chromatography (HPLC) column or a fast protein liquid chromatography (FPLC) column, is also disclosed. Chromatography columns or cartridges containing the functionalized support material, and methods of using functionalized support material, such as a media (e.g., chromatographic material) in a chromatography column or cartridge, are also disclosed.
Abstract:
[Object] To provide a method of purifying nucleic acids where the operation is simple and the nucleic acids can be extracted in a short time with high efficiency. [Solving Means] A method of purifying nucleic acids including the step of adsorbing substances in a sample containing nucleic acids with an ion exchange resin 10 including a positive ion exchange resin and a negative ion exchange resin. As the positive ion exchange resin, a first positive ion exchange resin and a second positive ion exchange resin having an exclusion limit molecular weight lower than that of the first positive ion exchange resin may be used.
Abstract:
The invention provides a method of reducing the sodium content of a water containing dissolved sodium ions, particularly a water with a sodium ion content of at least 100 ppm. Examples of such waters are effluents such as acid mine drainage and river waters. The method includes the steps of: (i) removing sodium, calcium and magnesium ions from the water by contacting the water with a cation exchange resin/s to capture sodium, calcium and magnesium ions thereon, (ii) treating the cation exchange resin/s of step (i) with nitric acid to produce an eluant containing sodium ions, calcium ions, magnesium ions nitrate ions and nitric acid, (iii) adding a carbonate to the eluant to precipitate the calcium and magnesium ions as calcium and magnesium carbonates; (iv) separating the precipitated carbonates from the eluant; and (v) treating the eluant from step (iv) to obtain a sodium and/or potassium nitrate product.
Abstract:
Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.
Abstract:
A method for inhibiting formation of nitrosamines and an anion exchange resin produced therefrom comprising providing an anion exchange resin with a nitrosating agent and mixing a cation exchange resin with the anion exchange resin to inhibit formation of nitrosamines on the anion exchange resin.
Abstract:
The invention provides a method of reducing the sodium content of a water containing dissolved sodium ions, particularly a water with a sodium ion content of at least 100 ppm. Examples of such waters are effluents such as acid mine drainage and river waters. The method includes the steps of: (i) removing sodium, calcium and magnesium ions from the water by contacting the water with a cation exchange resin/s to capture sodium, calcium and magnesium ions thereon, (ii) treating the cation exchange resin/s of step (i) with nitric acid to produce an eluant containing sodium ions, calcium ions, magnesium ions nitrate ions and nitric acid, (iii) adding a carbonate to the eluant to precipitate the calcium and magnesium ions as calcium and magnesium carbonates; (iv) separating the precipated carbonates from the eluant; and (v) treating the eluant from step (iv) to obtain a sodium and/or potassium nitrate product.
Abstract:
A method for preparing non-agglomerating mixed bed ion exchange resin systems without affecting the ion exchange kinetics of the anion exchange resin component of the mixed bed system is disclosed. Pretreatment of the anion exchange resin component with a sulfonated poly(vinylaromatic) polyelectrolyte is particularly effective in providing non-agglomerated mixed bed systems without affecting ion exchange kinetics. Treatment levels of 10 to 800 milligrams per liter of anion exchange resin with sulfonated poly(vinylaromatic) polyelectrolyte having number average molecular weight from 5,000 to 1,000,000 are particularly preferred.