Abstract:
A mixed quartz powder contains quartz powder and two or more types of doping element in an amount of from 0.1 to 20 mass %. The aforementioned doped elements include a first dope element selected from the group consisting of N, C and F, and a second dope element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, the lanthanides and the actinides. The “quartz powder” is a powder of crystalline quartz or it is a powder of glassy SiO2 particles. It is made form natural occurring quartz or it is fabricated synthetically. The “quartz powder” may be doped. The compounding ratio of the total amount (M1) of the aforementioned first elements and the total amount (M2) of the aforementioned second elements as the ratio of the number of atoms (M1)/(M2) is preferably from 0.1 to 20. Al as well as the aforementioned doped elements is preferably included in a mixed quartz powder of this invention.
Abstract:
A silica optical fiber is provided, which contains a pure-silica core and a cladding layer formed on the pure-silica core, wherein the pure-silica core contains a C element and has a content of elements belonging to the third period-the seventh period of the periodic table, except Si element that constitutes the quartz structure, of not more than 100 ppm. The present invention can provide a silica optical fiber superior in the resistance to high energy electromagnetic waves such as UV light and null-rays.
Abstract:
A quartz glass which would not become a source for the contamination even if it contains metallic impurities. This quartz glass includes a region where a concentration of E′ center as measured by means of an electron spin resonance analysis is 3×1019 cm−3 or more. This quartz glass can be manufactured by a method including the steps of forming an initial quartz glass by melting and quenching a raw material for quartz glass, and implanting therein an ion, which is capable of entering into an SiO2 network of the initial quartz glass and substantially incapable of externally diffusing, to increase a concentration of E′ center in at least part of the initial quartz glass. This quartz glass can be manufactured by a method making use of a quartz glass raw material containing 0.01 to 0.1% by weight of silicon, by a method of irradiating ultraviolet ray to the initial quartz glass, or by a method of giving an abrasion damage to the surface of the initial quartz glass by means of sand blast.
Abstract:
A quartz glass which would not become a source for the contamination even if it contains metallic impurities. This quartz glass includes a region where a concentration of E' center as measured by means of an electron spin resonance analysis is 3.times.10.sup.19 cm.sup.-3 or more. This quartz glass can be manufactured by a method including the steps of forming an initial quartz glass by melting and quenching a raw material for quartz glass, and implanting therein an ion, which is capable of entering into an SiO.sub.2 network of the initial quartz glass and substantially incapable of externally diffusing, to increase a concentration of E' center in at least part of the initial quartz glass. This quartz glass can be manufactured by a method making use of a quartz glass raw material containing 0.01 to 0.1% by weight of silicon, by a method of irradiating ultraviolet ray to the initial quartz glass, or by a method of giving an abrasion damage to the surface of the initial quartz glass by means of sand blast.
Abstract:
One aspect relates to a process for the preparation of a quartz glass body, including providing a silicon dioxide granulate, wherein the silicon dioxide granulate was made from pyrogenic silicon dioxide powder and the silicon dioxide granulate has a BET surface area in a range from 20 to 40 m2/g, making a glass melt out of silicon dioxide granulate in an oven and making a quartz glass body out of at least part of the glass melt. The oven has at least a first and a further chamber connected to one another via a passage. The temperature in the first chamber is lower than the temperature in the further chambers. On aspect relates to a quartz glass body which is obtainable by this process. One aspect relates to a light guide, an illuminant and a formed body, which are each obtainable by further processing of the quartz glass body.