Abstract:
A method of assembling and configuring multiple mezzanine cards on a carrier card is disclosed. The method includes the establishing an I/O profile that represents the I/O configuration of a mezzanine card. The I/O of the mezzanine card is not enabled unless the I/O profile matches a known value stored on the carrier card. In this way, the electronic circuitry is protected if an incorrect mezzanine card is connected to the carrier card.
Abstract:
An electronic isolation device is formed on a monolithic substrate and includes a plurality of passive isolation components. The isolation components are formed in three metal levels. The first metal level is separated from the monolithic substrate by an inorganic PMD layer. The second metal level is separated from the first metal level by a layer of silicon dioxide. The third metal level is separated from the second metal level by at least 20 microns of polyimide or PBO. The isolation components include bondpads on the third metal level for connections to other devices. A dielectric layer is formed over the third metal level, exposing the bondpads. The isolation device contains no transistors.
Abstract:
An electronic control device for executing fundamental and additional functions includes: a fundamental circuit element that executes the fundamental function; an additional circuit element that executes the additional function; and a printed wiring board having a rectangular shape divided into first and second regions. The fundamental circuit element is mounted in the first region, and the additional circuit element is mounted in the second region. The fundamental circuit element includes an operation voltage generating circuit for supplying an operation voltage to at least a part of the fundamental and additional circuit elements and a bypass capacitor for functioning for the additional circuit element. The bypass capacitor is connected to a power source wiring pattern for supplying the operation voltage to the additional circuit element. The bypass capacitor is arranged in the first region at a position nearer the second region than the operation voltage generating circuit.
Abstract:
An apparatus ensures that circuit cards of a computer system are properly oriented and fully inserted into their slots before allowing the computer system to power-up. Each card has two electrically connected key fingers on the card edge, while each slot has first and second contacts adapted to engage the two key fingers when the card is fully seated on the slot. One contact of the first slot is connected to a known voltage, while the second contact is connected to the first contact of the next slot. The second contact of the next slot is in turn connected to the first contact of the subsequent slot. Thus, upon a complete engagement of the cards onto the slots, all contacts are connected in a series arrangement. The final contact is connected to an insertion detector which turns on the computer system power supply only when the voltage of the last contact equals the known voltage, indicating that all circuit cards are fully seated on the slots. Additionally, each circuit card has a card edge with asymmetrical segments which form a mechanical key for ensuring proper orientation of the circuit card on the slot.
Abstract:
The main system printed circuit board of a computer is mounted on a tray structure that also supports other CPU components of the computer and is removably insertable into the housing portion of the computer. A specially designed card edge connector portion of the system board is operatively insertable into a socketed connector on another circuit board interiorly mounted within the housing. Electrically conductive signal fingers and grounding fingers are respectively mounted on first and second sides of the card edge, with the signal fingers being connected to the signal plane of the system board, and the grounding fingers being connected to its ground plane. A sacrificial grounding pad is positioned on the second side of the edge connector portion, between the grounding pads and its leading edge, and is initially engaged by the internal connector contact strips, as the card edge is being inserted into the connector, to equalize any voltage potential between the two circuit boards before the contact strips engage the signal and grounding fingers The grounding pad thus eliminates the necessity of incorporating clamping diodes in the system board circuitry to avoid ESD damage to its components. The initially engageable grounding pad also serves as a sacrificial contact wear member that lengthens the connectivity life of the system board by diminishing the mechanical wear-away of the signal and grounding fingers.
Abstract:
Grounding terminals of a memory unit are disposed at the opposite ends of an array of signal terminals of the memory unit, respectively, reception grounding terminals of a connector are disposed at the opposite ends of any array of reception signal terminals of the connector, respectively, the grounding terminals of the memory unit are connected to the reception grounding terminals of the connector, respectively, before the signal terminals of the memory unit are connected to the reception signal terminals of the connector in inserting the memory unit in the connector. Upon the insertion of the memory unit in the connector, the static electricity accumulate in the memory unit is discharged surely to a ground without affecting the semiconductor memory of the memory unit through the signal terminals and the reception signal terminals.
Abstract:
Cartridges for a microcomputer have two adjacent edge connectors replaced by a single connector with a projection which passes into the area in which the adjacent connector would normally be placed. When the cartridge is inserted or removed from the connector socket in the microcomputer the projection transiently contacts the associated socket contact. A fixed potential (for example earth potential) normally applied to the main portion of the edge connector from its associated socket contact is therefore transferred to the transiently contacted socket contact to provide a reset signal for the microprocessor of the microcomputer. Thus, the microprocessor is reset each time a cartridge is inserted or withdrawn.
Abstract:
A printed circuit board or the like for electrical apparatus has edge connectors for insertion into a terminal or group of terminals for communication of electrical signals from the terminals to the board and vice versa. Some contacts on the board edge are recessed slightly from the edge so that certain electrical connections may be made prior to others.
Abstract:
An electronic isolation device is formed on a monolithic substrate and includes a plurality of passive isolation components. The isolation components are formed in three metal levels. The first metal level is separated from the monolithic substrate by an inorganic PMD layer. The second metal level is separated from the first metal level by a layer of silicon dioxide. The third metal level is separated from the second metal level by at least 20 microns of polyimide or PBO. The isolation components include bondpads on the third metal level for connections to other devices. A dielectric layer is formed over the third metal level, exposing the bondpads. The isolation device contains no transistors.
Abstract:
An electronic isolation device is formed on a monolithic substrate and includes a plurality of passive isolation components. The isolation components are formed in three metal levels. The first metal level is separated from the monolithic substrate by an inorganic PMD layer. The second metal level is separated from the first metal level by a layer of silicon dioxide. The third metal level is separated from the second metal level by at least 20 microns of polyimide or PBO. The isolation components include bondpads on the third metal level for connections to other devices. A dielectric layer is formed over the third metal level, exposing the bondpads. The isolation device contains no transistors.