Abstract:
A microfabrication apparatus for fabricating a microstructure on a substrate is disclosed and comprises a partitioning system arranged to provide an aperture, a particle source that can generate a beam of particles for patterning the substrate and a substrate holder which supports the substrate. Relative motion is effected between the aperture and the substrate over a portion of the substrate's surface so that different points on the surface portion are exposed at different times. Whilst that motion is ongoing, one or more exposure conditions are varied so that the different points are subject to different exposure conditions. Corresponding microfabrication processes and products obtained thereby are also disclosed.
Abstract:
A method of forming a memory device that in one embodiment may include forming a magnetic tunnel junction on a first electrode using an electrically conductive mask and subtractive etch method. Following formation of the magnetic tunnel junction, at least one dielectric layer is deposited to encapsulate the magnetic tunnel junction. Ion beam etching/Ion beam milling may then remove the portion of the at least one dielectric layer that is present on the electrically conductive mask, wherein a remaining portion of the at least one dielectric layer is present over the first electrode. A second electrode may then be formed in contact with the electrically conductive mask.
Abstract:
The invention is directed to a patterned aerogel-based layer that serves as a mold for at least part of a microelectromechanical feature. The density of an aerogel is less than that of typical materials used in MEMS fabrication, such as poly-silicon, silicon oxide, single-crystal silicon, metals, metal alloys, and the like. Therefore, one may form structural features in an aerogel-based layer at rates significantly higher than the rates at which structural features can be formed in denser materials. The invention further includes a method of patterning an aerogel-based layer to produce such an aerogel-based mold. The invention further includes a method of fabricating a microelectromechanical feature using an aerogel-based mold. This method includes depositing a dense material layer directly onto the outline of at least part of a microelectromechanical feature that has been formed in the aerogel-based layer.
Abstract:
Systems and methods for preparing freestanding films using laser-assisted chemical etch (LACE), and freestanding films formed using same, are provided. In accordance with one aspect a substrate has a surface and a portion defining an isotropically defined cavity; and a substantially continuous film is disposed at the substrate surface and spans the isotropically defined cavity. In accordance with another aspect, a substrate has a surface and a portion defining an isotropically defined cavity; and a film is disposed at the substrate surface and spans the isotropically defined cavity, the film including at least one of hafnium oxide (HfO2), diamond-like carbon, graphene, and silicon carbide (SiC) of a predetermined phase. In accordance with still another aspect, a substrate has a surface and a portion defining an isotropically defined cavity; and a multi-layer film is disposed at the substrate surface and spans the isotropically defined cavity.
Abstract:
In removal processing using a pulsed laser beam, processing deviation occurs in the depthwise direction to cause a processing error in a predetermined removal shape.A first pulsed laser beam L1 is a pulsed laser beam having a wavelength that exhibits transmittance to a workpiece 6, and a second pulsed laser beam L2 is a pulsed laser beam having a wavelength that exhibits absorption to the workpiece 6. The first pulsed laser beam L1 is focused into the workpiece 6, and a focal point P1 of the first pulsed laser beam L1 is scanned along the outline of a predetermined removal region R1 to form a modified portion 6A along the outline of the predetermined removal region R1. Next, removal processing is performed by scanning the second pulsed laser beam L2 in a region enclosed by the modified portion 6A.
Abstract:
In a method for imaging a solid state substrate, a vapor is condensed to an amorphous solid water condensate layer on a surface of a solid state substrate. Then an image of at least a portion of the substrate surface is produced by scanning an electron beam along the substrate surface through the water condensate layer. The water condensate layer integrity is maintained during electron beam scanning to prevent electron-beam contamination from reaching the substrate during electron beam scanning. Then one or more regions of the layer can be locally removed by directing an electron beam at the regions. A material layer can be deposited on top of the water condensate layer and any substrate surface exposed at the one or more regions, and the water condensate layer and regions of the material layer on top of the layer can be removed, leaving a patterned material layer on the substrate.
Abstract:
A laser processing method for forming a hole in a sheet-like object to be processed made of silicon comprises a depression forming step of forming a depression in a part corresponding to the hole on a laser light entrance surface side of the object, the depression opening to the laser light entrance surface; a modified region forming step of forming a modified region along a part corresponding to the hole in the object by converging a laser light at the object after the depression forming step; and an etching step of anisotropically etching the object after the modified region forming step so as to advance the etching selectively along the modified region and form the hole in the object; wherein the modified region forming step exposes the modified region or a fracture extending from the modified region to an inner face of the depression.
Abstract:
A manufacturing method of a semiconductor device includes: irradiating a laser beam on a single crystal silicon substrate, and scanning the laser beam on the substrate so that a portion of the substrate is poly crystallized, wherein at least a part of a poly crystallized portion of the substrate is exposed on a surface of the substrate; and etching the poly crystallized portion of the substrate with an etchant. In this case, a process time is improved.
Abstract:
A method of manufacturing a base body having a microscopic hole, includes: forming at least one of a first modified region and a second modified region by scanning inside of a base body with a focal point of a first laser light having a pulse duration on order of picoseconds or less; forming a periodic modified group formed of a plurality of third modified regions and fourth modified regions by scanning an inside of the base body with a focal point of a second laser light having a pulse duration on order of picoseconds or less; obtaining the base body which is formed so that the first modified region and the second modified region overlap or come into contact with the modified group; and forming a microscopic hole by removing the first modified region and the third modified regions by etching.
Abstract:
In a method for imaging a solid state substrate, a vapor is condensed to an amorphous solid water condensate layer on a surface of a solid state substrate. Then an image of at least a portion of the substrate surface is produced by scanning an electron beam along the substrate surface through the water condensate layer. The water condensate layer integrity is maintained during electron beam scanning to prevent electron-beam contamination from reaching the substrate during electron beam scanning. Then one or more regions of the layer can be locally removed by directing an electron beam at the regions. A material layer can be deposited on top of the water condensate layer and any substrate surface exposed at the one or more regions, and the water condensate layer and regions of the material layer on top of the layer can be removed, leaving a patterned material layer on the substrate.