Abstract:
A solid-state image sensor, which has a two-dimensional matrix of a plurality of pixels used to sense the two-dimensional spatial distribution of radioactive rays, light rays, electrons, ions, or the like, is provided with an aperture that extends through a substrate at an image sensing unit on which the pixels are arranged, and a signal transfer path that connects signal transfer electrodes for reading images of the respective pixels kept clear of the aperture. Furthermore, the image sensing unit is divided into at least two regions by a boundary including the aperture, and these regions have individual signal read registers. With this structure, the image sensor serves as both an image sensor for sensing the two-dimensional distribution of radiation or the like, and an aperture for passing such radiation.
Abstract:
The spectrometer comprises, in combination: a slit (1) for the entry of a light beam; a collimator; a dispersion system (9); focusing means and a detector (13). The collimator comprises at least a first concave spherical mirror (3) and at least a first Schmidt plate (5) in an off-axis arrangement.
Abstract:
An electron microscope 10 is adapted to enable spectroscopic analysis of a sample 16. A parabolic mirror 18 has a central aperture 20 through which the electron beam can pass. The mirror 18 focuses laser illumination from a transverse optical path 24 onto the sample, and collects Raman and/or other scattered light, passing it back to an optical system 30. The mirror 18 is retractable (within the vacuum of the electron microscope) by a sliding arm assembly 22.
Abstract:
Optical systems that provide for simultaneous images and spectra from an object, such as a tissue sample, an industrial object such as a computer chip, or any other object that can be viewed with an optical system such as a microscope, endoscope, telescope or camera. In some embodiments, the systems provide multiple images corresponding to various desired wavelength ranges within an original image of the object, as well as, if desired, directional pointer(s) that can provide both an identification of the precise location from which a spectrum is being obtained, as well as enhancing the ability to point the device.
Abstract:
A spectrophotometer measures optical absorption of light by a sample received in a sample cell. An array of optical elements disperses the light over a spectral pattern, and a fiber optic beam splitter splits light at a selected spectral band into a reference component and a test component. Detectors measure the intensity of the reference component and the test component after the test component passes through the sample. The fiber optic beam splitter includes a plurality of strands arranged with first ends terminating in a common circular area. Opposite ends of peripheral strands are collected into a first set that transmits the test component while the remaining strands for a second set that transmits the reference component. Preferably, there is a single, central, large strand surrounded by smaller strands. Two emitters are provided for light of two different types, such as visible and UV. The optical array forms a collimated beam having an inner core of one type of light and an outer shell of the other. Specially constructed optical elements then reflect and refract the collimated beam. A motor drives a mirror to scan the beam across an optical slit positioned in front of the beam splitter to select a desired spectral band.
Abstract:
The invention contemplates a two-dimensional spectrometer wherein a single catadioptric system is both the collimator and the camera for two-pass use of any two-dimensionally dispersed spectrometer. Off-axis aberration effects are minimized by arranging a fiber optic as the light-entrance aperture, on the central optical axis of the spectrometer and in close proximity to or centrally inserted in a two-dimensional array detector at the image plane. In other words, the grating of the spectrometer is also a reflector which folds admitted and dispersed light for return to the image plane along essentially the same path and through the same optical elements as are used on the incoming pass of light to the diffraction grating. The invention is shown for its applicability to each of various types of two-dimensional spectrometer-design configurations.
Abstract:
A photometrical apparatus has a first light receiving element, and a second light receiving element less sensitive to temperature and other environmental influences than said first light receiving element whereby a value Pm of measured quantity of light from the subject is calculated from the following formula ##EQU1## Pr designates a quantity of light from a standard light source, Dr and Dm designate outputs of the first light receiving element generated by the light from the standard light source and the subject, Dpo and Dpt designate outputs of the first light receiving element generated by the light from the reference light source and the subject, and Dso and Dst designate outputs of the second light receiving element generated by the light from the reference light source and the subject.
Abstract:
A filter spectrograph unit for use in a micro-Raman spectrometer system or a remote sensing system is formed by combining an infinitely variable spectral line rejection filter (having appropriate entrance optics) functionally and operatively with a dispersing spectrograph. The line rejection filter is a modified form of a zero-dispersion double monochromator having an input light signal including laser light scattered from, for examle, minute Raman-active particles. The modified double monochromator includes an acylindrical mirror positioned so that the laser line will exit through an aperture in the mirror and all other spectral lines will be reflected and reformed by the modified double monochromator into an output light signal containing all of the original spectral information, less the rejected laser line. The dispersing spectrograph is integrally coupled to the modified double monochromator and produces from the output light signal a display of the entire Raman spectrum suitable for parallel readout and rapid data analysis.
Abstract:
Optical devices that combine imaging with spectral detection usually require bulky or expensive optics or are limited in the spectral measurements that can be made. The disclosed device uses a lens and mirror to provide two image planes: one for a pixelated detector and the other for an optical fiber assembly. The optical fiber assembly may be scanned over most or all of the field of view, or this may be achieved with a fixed fiber assembly and translatable mirror. Multiple fibers may be included in the assembly and multiple measurement or other devices may be connected to the remote ends of the optical fibers.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associate color of a structure is also provided.