Airship system
    201.
    发明授权
    Airship system 失效
    飞艇系统

    公开(公告)号:US06908061B2

    公开(公告)日:2005-06-21

    申请号:US10877082

    申请日:2004-06-25

    Applicant: Yutaka Akahori

    Inventor: Yutaka Akahori

    Abstract: An airship system according to the invention has an airship (110), a base station (120), and at least three measurement points. The airship (110) emits ultrasonic waves upon receiving an instruction from the base station (120). Measurement point units (S1-S3) receive the ultrasonic waves, and thereby measure distances from the airship (110) to the respective measurement points. An MPU that is incorporated in the base station (120) calculates a position of the airship (110). The base station (120) controls a route of the airship (110) based on the calculated position by sending a flight instruction to the airship (110). In this manner, an airship system can be provided that makes it unnecessary for an operator to pilot the airship and that can reduce the load weight and the power consumption of the airship.

    Abstract translation: 根据本发明的飞艇系统具有飞艇(110),基站(120)和至少三个测量点。 飞艇(110)在接收到来自基站(120)的指令时发射超声波。 测量点单元(S 1 -S 3)接收超声波,从而测量从飞艇(110)到相应测量点的距离。 并入基站(120)的MPU计算飞艇(110)的位置。 基站(120)通过向飞艇(110)发送飞行指令,基于计算出的位置来控制飞艇(110)的路线。 以这种方式,可以提供一种飞艇系统,使得飞行员不需要飞行飞艇,并且可以减少飞艇的负载重量和功率消耗。

    AUTONOMOUS LOW-ALTITUDE UAV DETECTION SYSTEM
    202.
    发明公开

    公开(公告)号:US20230222809A1

    公开(公告)日:2023-07-13

    申请号:US17591757

    申请日:2022-02-03

    Abstract: An autonomous unmanned aerial vehicle detecting system for monitoring a geographic area includes an unmanned blimp adapted to hover in air, at least one camera mounted on the blimp to scan at least a portion of the geographic area, a location sensor to determine a location of the blimp, and a controller arranged in communication with blimp, the at least one camera, and the location sensor. The controller is configured to position the blimp at a desired location in the air based on inputs received from the location sensor, and monitor the geographic area based on the images received from at least one camera. The controller is also configured to detect a presence of an unmanned aerial vehicle within the geographic area based on the received images, and determine whether the detected unmanned aerial vehicle is an unauthorized unmanned aerial vehicle based on the received images.

    SYSTEMS AND METHODS FOR LONG ENDURANCE AIRSHIP OPERATIONS

    公开(公告)号:US20170297672A1

    公开(公告)日:2017-10-19

    申请号:US15297051

    申请日:2016-10-18

    Inventor: Stephen B. Heppe

    CPC classification number: B64B1/00 B64C37/02 B64C2201/022 B64C2201/06

    Abstract: In one example, a long endurance airship system includes a first combined airship with a payload airship and a first logistics airship. The first combined airship is configured for stationkeeping at a predetermined station during meteorological conditions with wind speeds below a predetermined threshold. The airship system also includes a second combined airship which is a reconfiguration of the first combined airship and includes the payload airship and a second logistics airship. The second combined airship is configured for stationkeeping at the predetermined station in all meteorological conditions, including meteorological conditions with wind speeds above the predetermined threshold.

    Devices and systems for thermal management

    公开(公告)号:US09658006B1

    公开(公告)日:2017-05-23

    申请号:US14687137

    申请日:2015-04-15

    Abstract: Systems and devices may include a thermal management device that includes a high emissivity material. The high emissivity material is configured to have a high emissivity with respect to wavelengths of electromagnetic radiation in a thermal infrared spectrum. The thermal management device is arrangeable on a surface of a component of a stratospheric aerial vehicle. The thermal management device is configured such that when arranged on the component of the stratospheric aerial vehicle during flight, a first side of the thermal management device faces substantially upward with respect to ground, and the second side of the thermal management device faces substantially downward with respect to the ground. The second side is shaped to retain air that is warmer than an ambient air temperature at a stratospheric altitude.

Patent Agency Ranking