Abstract:
An apparatus comprising a microelectromechanical system. The microelectromechanical system includes a crystalline structural element having dislocations therein. For at least about 60 percent of adjacent pairs of the dislocations, direction vectors of the dislocations form acute angles of less than about 45 degrees.
Abstract:
Planar cavity Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structure are provided. The method includes forming at least one Micro-Electro-Mechanical System (MEMS) cavity having a planar surface using a reverse damascene process.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes patterning a wiring layer to form at least one fixed plate and forming a sacrificial material on the wiring layer. The method further includes forming an insulator layer of one or more films over the at least one fixed plate and exposed portions of an underlying substrate to prevent formation of a reaction product between the wiring layer and a sacrificial material. The method further includes forming at least one MEMS beam that is movable over the at least one fixed plate. The method further includes venting or stripping of the sacrificial material to form at least a first cavity.
Abstract:
System and method for forming a structure including a MEMS device structure. In order to prevent warpage of a substrate arising from curing process for a sacrificial material (such as a photoresist), and from subsequent high temperature process steps, an improved sacrificial material comprises (i) a polymer and (ii) a foaming agent or special function group. The structure can be formed by forming a trench in a substrate and filling the trench with a sacrificial material. The sacrificial material includes (i) a polymer and (ii) a foaming agent or special function group. After further process steps are completed, the sacrificial material is removed from the trench.
Abstract:
Disclosed is a microelectromechanical systems (MEMS) device and method of manufacturing the same. MEMS such as an interferometric modulator include a sidewall spacer formed adjacent to a movable mirror. The sidewall spacer may be a sacrificial spacer that is removed during fabrication, or it may remain in the final product. Increased clearance is provided between the movable mirror and a support structure during actuation of the movable mirror, thereby avoiding contact during operation of the interferometric modulator. The deformable layer may be deposited in a more continuous fashion over the contour of a lower layer as determined by the contour of the sidewall spacer, resulting in a stronger and more resilient deformable layer.
Abstract:
A method is disclosed for making shaped optical moems components with stressed thin films. In particular, stressed thin films are used to make mirror structures.
Abstract:
Method for fabricating ultrathin gaps producing ultrashort standoffs in array structures includes sandwiching a patterned device layer between a silicon standoff layer and a silicon support layer, providing that the back surfaces of the respective silicon support layer and the standoff layer are polished to a desired thickness corresponding to the desired standoff height on one side and to at least a minimum height for mechanical strength on the opposing side, as well as to a desired smoothness. Standoffs and mechanical supports are then fabricated by etching to produce voids with the dielectric oxides on both sides of the device layer serving as suitable etch stops. Thereafter, the exposed portions of the oxide layers are removed to release the pattern, and a package layer is mated with the standoff voids to produce a finished device. The standoff layer can be fabricated to counteract curvature.
Abstract:
A method of forming a thin film metallization layer having a predetermined residual stress and a predetermined sheet resistance and force measuring devices formed using the methods.
Abstract:
A method of fabricating an infrared detector, a method of controlling the stress in a polycrystalline SiGE layer and an infrared detector device is disclosed. The method of fabricating includes the steps of forming a sacrificial layer on a substrate; patterning said sacrificial layer; establishing a layer consisting essentially of polycrystalline SiGe on said sacrificial layer; depositing an infrared absorber on said polycrystalline SiGe layer; and thereafter removing the sacrificial layer. The method of controlling the stress in a polycrystalline SiGe layer deposited on a substrate is based on varying the deposition pressure. The infrared detector device comprises an active area and an infrared absorber, wherein the active area comprises a polycrystalline SiGe layer, and is suspended above a substrate.
Abstract:
A semiconductor sensor having a thin-film structure body, in which thin-film structure is prevented from bending due to the internal stress distribution in the thickness direction, is disclosed. A silicon-oxide film is formed as a sacrificial layer on a silicon substrate, and a polycrystalline-silicon thin film is formed on the silicon-oxide film. Thereafter, phosphorus (P) is ion-implanted in the surface of the polycrystalline-silicon thin film, and thereby the surface state of the polycrystalline-silicon thin film is modified. A portion of distribution of stress existing in the thickness direction of the polycrystalline-silicon thin film is changed by this modification, and stress distribution is adjusted. By removal of the silicon-oxide film, a movable member of the polycrystalline-silicon thin film is disposed above the silicon substrate with a gap interposed therebetween.