Abstract:
One embodiment relates to an apparatus for electron beam lithography which includes a linear array of reflection electron beam lithography columns and a rotary stage. Each column is separately controllable to write a portion of a lithographic pattern onto a substrate. The rotary stage is configured to hold multiple substrates and to be rotated under the linear array of reflection electron beam lithography columns. Another embodiment relates to a method of electron beam lithography which includes simultaneously rotating and linearly translating a stage holding a plurality of wafers, and writing a lithography pattern using a linear array of reflection electron beam lithography columns over the stage. Each said column traverses a spiral path over the stage as the stage is rotated and linearly translated. Other embodiments, aspects and feature are also disclosed.
Abstract:
A film deposition method using a film deposition apparatus, includes: a film deposition process step in which at least a substrate is mounted on at least one of the circular concave portions and a film is deposited on the substrate; and a particle reducing process step performed before or after the film deposition process step, in which particles in the vacuum chamber are reduced without mounting substrates on the circular concave portions, the particle reducing process step including, a step of supplying a first gas to the vacuum chamber; a step of generating plasma from the first gas by supplying high frequency waves to a plasma generating device provided for the vacuum chamber; and a step of exposing the plurality of circular concave portions, on each of which a substrate is not mounted, to the plasma while rotating the susceptor.
Abstract:
A particle reducing method includes a step of supplying a first gas to a vacuum chamber in which a susceptor, formed by an insulating object and the surface of which is provided with a substrate mounting portion, is rotatably provided; a step of generating plasma from the first gas by supplying high frequency waves to a plasma generating device provided for the vacuum chamber; and a step of exposing the substrate mounting portion, on which a substrate is not mounted, to the plasma while rotating the susceptor.
Abstract:
A sample holder assembly includes a sample tray, a base plate, a stage mount, and a calibration standard mounted onto the stage mount. Three mating structures on the bottom of the base plate mate with corresponding structures on a stage mount that is attached to the sample stage of the SEM. An optional contacting conductor provides electrical contact between the stage mount and the base plate so that charge generated on the sample by the electron beam can leave the sample through the sample conductive layer to the sample tray, to the base plate, to the stage mount, and through the grounded stage.
Abstract:
Mineral samples for use in analytical instruments are created by a system that greatly reduces the sample preparation time and facilitates automation. For example, in some implementations, rather than grinding to expose the interior of mineral particles in sample plug containing mineral particles in an epoxy compound, the sample plug is sliced with a saw, which more rapidly provides in many applications a sufficiently smooth surface on the exposed particle surfaces for observation. Rather than slowly mixing a slow curing epoxy to avoid introducing bubbles into the sample plug, some implementations use a fast settle fixative and a mechanical mixture that avoid bubbles.
Abstract:
A sample holder assembly includes a sample tray, a base plate, a stage mount, and a calibration standard mounted onto the stage mount. Three mating structures on the bottom of the base plate mate with corresponding structures on a stage mount that is attached to the sample stage of the SEM. An optional contacting conductor provides electrical contact between the stage mount and the base plate so that charge generated on the sample by the electron beam can leave the sample through the sample conductive layer to the sample tray, to the base plate, to the stage mount, and through the grounded stage.
Abstract:
A method for mounting a specimen on a specimen carrier for milling in an ex-situ lift-out (EXLO) milling process is described where “cross-section” specimens, plan view specimens, or bulk specimens may be lifted-out for analysis. The method comprising positioning the specimen on a recessed surface within a specimen carrier top surface so that a region to be milled is centered about a carrier opening formed through the specimen carrier. Peripheral edges of the specimen are then wedged against inwardly sloping side walls framing the recessed surface. Finally, the specimen is mounted to the specimen carrier so that a path of a milling beam intersects the region to be milled and carrier opening.
Abstract:
A focused ion beam apparatus, including: a sample holder provided with a fixing surface for fixing, via a deposition film, a micro-specimen extracted from a specimen using a method for fabrication by a focused ion beam, in which a width of the fixing surface is smaller than 50 microns; a specimen transferring unit having a probe to which the specimen can be joined through the deposition film, and transferring the micro-specimen extracted from the specimen by the focused ion-beam fabrication method, to the sample holder; and a sample chamber in which the sample, the sample holder and the probe are laid out, wherein, in the sample chamber, the micro-specimen extracted from the specimen by the focused ion-beam fabrication method is fixed to the fixing surface of the sample holder through the deposition film, and the micro-specimen fixed to the fixing surface is fabricated by irradiating the focused ion beam.
Abstract:
A device for holding a specimen holder, the device including a body with a slot formed therein. The slot includes an interior for receiving the specimen holder which may be a flat disk with edges and a pair of opposing sides. The disk may be made of a resilient deformable material. The slot may be sized to receive the specimen holder through an open top end and may taper from top bottom, such that the bottom end of the slot is smaller than the specimen holder. The slot further configured to contact the specimen holder along edges of the specimen holder and to allow some sideways deformation of the specimen holder without either side of the specimen holder distant from the edges coming into contact with the interior of the slot.
Abstract:
A particle beam device includes a movable carrier element with at least one receiving element for receiving a specimen and in which the receiving element is situated on the carrier element. In various embodiments, the receiving element may be situated removably on the carrier element and/or multiple receiving elements may be situated on the carrier element in such a way that a movement of the carrier element causes a movement of the multiple receiving elements in the same spatial direction or around the same axis. The carrier element may be movable in three spatial directions situated perpendicular to one another and rotatable around a first axis which is parallel to an optical axis of the particle beam device and around a second axis which is situated perpendicular to the optical axis. A method for using the particle beam device in connection with specimen study and preparation is also disclosed.