Abstract:
Die Erfindung betrifft eine Leiterplatte (10) für elektrische Schaltungen, wobei die Leiterplatte (10) auf mindestens einer Oberfläche eine Lötstopmaske (20) mit Aussparungen für Lötstellen (24) zum Kontaktieren von elektrischen Bauelementen (26), und Leiterbahnen aufweist, wobei mindestens eine der Lötstellen (24) mehrere Schichten (38, 40, 42) aus unterschiedlichen Materialien umfasst und der mehrschichtige Aufbau der Lötstellen (24) sich von dem Aufbau der restlichen Leiterplatte (10) unterscheidet.
Abstract:
A package structure and a package process are provided. In the package process, firstly, a first electronic component having a plurality of first conductive bumps at a bottom thereof is provided. Then, a first insulation paste is coated on the first conductive bumps. The first electronic component is disposed on a circuit substrate having a plurality of substrate pads, and the first conductive bumps are respectively situated on the substrate pads. Next, a heating process is performed to both of the first conductive bumps and the first insulation paste, wherein the first conductive bumps is reflowed to bond the first electronic component and the substrate pads, and the first insulation paste is cured.
Abstract:
A mounting board of the invention includes: an insulative base; a plurality of first conductive elements provided on the insulative base and having lands; a plurality of second conductive elements disposed on the lands; a plurality of solder pieces each disposed on each of the second conductive elements; and an electronic component which includes electrode sections each contacting each of the solder pieces, wherein the first conductive elements are made from a first element that contains at least silver; the second conductive elements are made from a second element that contains at least copper; and the solder pieces are made from a third element that contains at least tin.
Abstract:
A wiring board includes an insulating board having a top surface arranged to have an electronic component mounted thereto, a conductor pattern formed on the top surface of the insulating board, and a heat emitting layer made of heat-emitting material covering the conductor pattern. The heat-emitting material has an emissivity not less than 0.8 for an electromagnetic wave having a wavelength λ = 0.002898/T at a temperature T ranging from 293K to 473K. This wiring board suppresses the temperature rise of the electronic component.
Abstract:
A method of creating an active electrode (10) that includes providing a flex circuit (100) having an electrode (120) made of a first material and providin a first mask (200) over the flex circuit, the first mask having an offset region (305) and an opening (220) that exposes the electrode. The method also includes depositing a second material (300) over the offset region and the opening, the second material being different from the first material an providing a second mask (400) over the second material, the second mask havin a opening (405) over a portion of the second material that is over the offset region.
Abstract:
Holes (40a) are formed with a laser beam through an insulating substrate (40) on which a metallic layer (42) is formed and via holes (36a) are formed by filling up the holes (40a) with a metal (46). After the via holes (36a) are formed, a conductor circuit (32a) is formed by etching the metallic layer (42) and a single-sided circuit board (30A) is formed by forming projecting conductors (38a) on the surfaces of the via holes (36a). The projecting conductors (38a) on the circuit board (30A) are put on the conductor circuit (32b) of another single-sided circuit board (30B) with adhesive layers (50) composed of an uncured resin in between and heated and pressed against the circuit (32b). The projecting conductors (38a) get in the uncured resin by pushing aside the resin and are electrically connected to the circuit (32b). Since single-sided circuit boards (30A, 30B, 30C, and 30D) can be inspected for defective parts before the boards (30A, 30B, 30C, and 30D) are laminated upon one another, only defectless single-sided circuit can be used in the step of lamination.
Abstract:
Described herein is a resistor (11) to which a trimming process is applied (hereinafter, also called a trimming resistor), a method for manufacturing a trimming resistor (11) and a circuit substrate (30a) using the trimming resistor (11).
Abstract:
A method of production of electrodes for an electrostatic motor generating electrostatic force between a facing stator and slider, including forming core electrodes on a board of at least one of the stator and the slider by patterning a conductive substance and depositing a conductive substance on the core electrodes so that the side edges become rounded. Any method selected from electroplating, electroless plating, electrostatic coating, or screen printing can be used to deposit the conductive substance on the core electrodes. The core electrodes may be patterned using non-etching means. Further, electrodes for an electrostatic motor generating an electrostatic force between a facing stator and slider provided with core electrodes patterned on the board of at least one of the stator and the slider and a conductive substance deposited on the core electrodes to form deposition layers so that the side edges become rounded.
Abstract:
A structure of solder joint structure formed of zinc-based lead-free solder having excellent characteristics is disclosed. Between a first lead-free solder layer and a soldering pad, the following layers are formed: a tin-copper alloy layer formed on the pad; a first alloy layer formed of second lead-free layer of which main ingredients are tin and silver; and a second alloy layer formed between the first alloy layer and the first lead-free solder. This structure allows forming the solder joint structure formed of zinc-based lead-free solder having high joint strength.