Abstract:
UAV configurations and battery augmentation for UAV internal combustion engines, and associated systems and methods are disclosed. A representative configuration includes a fuselage, first and second wings coupled to and pivotable relative to the fuselage, and a plurality of lift rotors carried by the fuselage. A representative battery augmentation arrangement includes a DC-powered motor, an electronic speed controller, and a genset subsystem coupled to the electronic speed controller. The genset subsystem can include a battery set, an alternator, and a motor-gen controller having a phase control circuit configurable to rectify multiphase AC output from the alternator to produce rectified DC feed to the DC-powered motor. The motor-gen controller is configurable to draw DC power from the battery set to produce the rectified DC feed.
Abstract:
The invention relates to a hybrid aircraft (F). According to the invention, a suitable position for mounting an energy generation unit (14) in the aircraft is identified, said energy generation unit comprising an internal combustion engine (34) and an electric generator (30) that is coupled thereto via a shaft. Independently of the position of the energy generation unit (14), a position is also identified for a thrust generation unit (12) comprising an electric motor (24) and a propeller (20) that is coupled thereto via a shaft (22). When the aircraft (F) is built, the thrust generation unit (12) and the energy generation unit (14) are disposed in the positions identified therefor. The generator (30) is then coupled to the electric motor (24) via an electric transmission device (16).
Abstract:
Measurement of only one axis of a three-axis magnetometer is used to control the performance of at least one corrective action on an unmanned aerial vehicle ("UAV"). In one example, a method includes receiving from a three-axis magnetometer a measurement representative of an attitude of a UAV, wherein the measurement is of only one axis of the magnetometer, comparing the measurement to an allowable range of attitudes, determining that the measurement is not within the allowable range of attitudes, and performing at least one corrective action on the UAV.
Abstract:
There is provided an Unmanned Air Vehicule (uav) (2) including an engine (4) and an airframe (6), including means for performing a deep stall maneouvre; at least one inflatable sleeve (12) connected or connectable to the airframe (6), and means for inflating the sleeve (12) during flight, wherein the inflated sleeve (12) extends along the lower side of the airframe (6) so as to protect same during deep stall landing. A method for operating an Unmanned Air Vehicle (UAV), including an engine and an airframe is also provided.
Abstract:
An airship (20) has a generally spherical shape and has an internal envelope (24) for containing a lifting gas such as Helium or Hydrogen. The airship has a propulsion and control system (36, 38) that permits it to be flown to a desired loitering location, and to be maintained in that location for a period of time. In one embodiment the airship may achieve neutral buoyancy when the internal envelope is as little as 7 % full of lifting gas, and may have a service ceiling of about 60,000 ft. The airship has an equipment module (180) that can include either communications equipment, or monitoring equipment, or both. The airship can be remotely controlled from a ground station. The airship has a solar cell array and electric motors (44, 46) of the propulsion and control system are driven by power obtained from the array. The airship also has an auxiliary power unit (52) that can be used to drive the electric motors. The airship can have a pusher propeller that assists in driving the airship and also moves the point of flow separation of the spherical airship further aft. In one embodiment the airship can be refuelled at altitude to permit extended loitering.
Abstract:
Un aéronef à décollage et à atterrissage verticaux (10) comprend une aile libre (16) constituée d'ailes situées sur les côtés opposés du fuselage (12) et interconnectées de manière à pouvoir tourner librement sans joints, dont le pas différentiel peut être ajusté par le pilote, par un ordinateur ou par télécommande. Pendant le lancement vertical, les gouvernes de profondeur (26) et de direction (24), ainsi que le réglage du pas différentiel des ailes commandent la profondeur, le lacet et le roulis, respectivement. Pendant le lancement, la gouverne de profondeur (26) incline le nez du fuselage (12) vers le bas afin de modifier le vecteur de poussée et accélérer horizontalement l'aéronef, alors que l'aile libre (16) tourne par rapport au fuselage (12) jusqu'à une position généralement horizontale afin de porter l'aéronef pendant le vol horizontal. La transition du vol horizontal au vol vertical est obtenue par le procédé inverse et l'aéronef peut être doucement récupéré dans ou sur une surface élastique telle qu'un filet (66).
Abstract:
An unmanned aircraft includes a forward propulsion system comprising one or more forward thrust engines and one or more corresponding rotors coupled to the forward thrust engines; a vertical propulsion system comprising one or more vertical thrust engines and one or more corresponding rotors coupled to the vertical thrust engines; a plurality of sensors; and a yaw control system, that includes a processor configured to monitor one or more aircraft parameters received from at least one of the plurality of sensors and to enter a free yaw control mode based on the received aircraft parameters.
Abstract:
L'aérodyne comprend une structure porteuse (4), à laquelle sont reliés au moins une soufflante porteuse (1) axiale, fixe par rapport à la structure porteuse (4), au moins un moteur d'entraînement principal (2) de la soufflante porteuse (1), au moins trois soufflantes d'attitude (3), pour commander l'attitude de l'aérodyne en roulis et tangage, chacune étant à motorisation électrique, et fixée à l'un respectivement de bras (5) allongés, répartis en saillie latérale externe autour de la structure porteuse (4), à laquelle chaque bras (5) est relié par une partie d'extrémité interne, l'axe de rotation de chaque soufflante d'attitude (3) étant fixe par rapport à la structure porteuse (4), et toutes les soufflantes d'attitude (3) étant situées à l'extérieur du volume occupé centralement par la soufflante porteuse (1), au moins une batterie d'alimentation des motorisations électriques des soufflantes d'attitude (3), un train d'atterrissage (4a), fixé sous la structure porteuse (4), et une nacelle pour supporter la batterie et une charge utile.