Abstract:
A piezoelectric filter having a smaller size is provided. A piezoelectric filter (10) includes a first substrate (22) having at least one first piezoelectric resonator (25) disposed on a main surface of the first substrate (22); a second substrate (12) having at least one second piezoelectric resonator (15) disposed on a main surface of the second substrate (12); a connection pattern (20) extending around the first piezoelectric resonator (25) and the second piezoelectric resonator (15) and disposed between the first substrate (22) and the second substrate (12), the main surface of the first substrate (22) facing the main surface of the second substrate (12), the first piezoelectric resonator (25) being bonded to the second piezoelectric resonator (15) with the connection pattern (20), and the first piezoelectric resonator (25) being remote from the second piezoelectric resonator (15), and a connecting layer (24x) for bonding a pad (28x) to a pad (18x), the pad 2(8x) being disposed on the main surface of the first substrate (22) and electrically connected to the first piezoelectric resonator (25), and the pad (18x) being disposed on the main surface of the second substrate (12) and electrically connected to the second piezoelectric resonator (15).
Abstract:
A method for fabricating a variable capacitive device including providing a base silicon-bearing compound electrode (107a-107c) which is vertically-inclined with respect to a substrate, depositing a sacrificial layer on the base electrode, depositing a silicon-bearing compound electrode (116a-117d) on the sacrificial layer which is also vertically-inclined with respect to the substrate, and removing the sacrificial layer from between the base silicon-bearing compound electrode (107a-107c) and the grown silicon-bearing compound electrode.(116a-116d) A variable capacitive device having a fixed vertically-inclined silicon-bearing compound electrode and a movable vertically-inclined silicon-bearing compound electrode produced by arranging a sacrificial layer on a base silicon-bearing compound electrode, depositing a grown silicon-bearing compound electrode on the sacrificial layer, and etching the sacrificial layer. Between the fixed silicon-bearing compound and the movable silicon-bearing compound electrode is a nanogap (120a-120d), the nanogap having a uniform width.
Abstract:
A method for fabrication of single crystal silicon micromechanical resonators using a two-wafer process, including either a Silicon-on-insulator (SOI) (104) or insulating base and resonator wafers (108) , wherein resonator anchors (122, 124) , a capacitive air gap (116) , isolation trenches (128, 130) , and alignment marks are micromachined in an active layer (114) of the base wafer; the active layer of the resonator wafer (124) is bonded directly to the active layer of the base wafer; the handle (144) and dielectric layers (140) of the resonator wafer are removed; viewing windows are opened in the active layer of the resonator wafer; masking the single crystal silicon semiconductor material active layer of the resonator wafer with photoresist material; a single crystal silicon resonator is machined in the active layer of the resonator wafer using silicon dry etch micromachining technology; and the photoresist material is subsequently dry stripped.
Abstract:
Procédé de réalisation d'un composant électromécanique (10) sur un substrat (15) plan et comportant une structure vibrante (22) dans le plan du substrat et des électrodes d'actionnement (23), comportant les étapes de : - formation du substrat comportant une zone en silicium (16) recouverte en partie par deux zones isolantes (18), - formation d'une couche sacrificielle en alliage de silicium / germanium par épitaxie sélective à partir de la partie non recouverte de la zone en silicium, - formation par épitaxie d'une couche (20) en silicium, fortement dopé, comportant une zone monocristalline (20b) disposée sur ladite couche sacrificielle et deux zones polycristallines (20a) disposées sur les zones isolantes, - formation simultanée de la structure vibrante et des électrodes d'actionnement, par gravure dans la zone monocristalline d'un motif prédéterminé destiné à former des espaces (24) entre les électrodes et la structure vibrante, - élimination par gravure sélective de ladite couche sacrificielle.
Abstract:
A method of manufacturing a micromachine in which corrosion of a structure is restrained and the micromachine are provided. The method of manufacturing a micromachine includes a first step of patterningly forming a sacrificial layer 12 having a silicon oxide based material containing a hydrogen fluoride dissociating species on a substrate 11, a second step of forming a structure 16 on the substrate 11 in the state of covering the sacrificial layer 12, a third step of forming the structure 16 on the sacrificial layer 12 with a hole part or parts 18 reaching the sacrificial layer 12, and a fourth step of forming a vibrating space between the substrate 11 and the structure 16 by introducing only a hydrogen fluoride gas or only the hydrogen fluoride gas and an inert gas through the hole part or parts 18 and etching the sacrificial layer 12 by use of the dissociating species contained in the sacrificial layer 12. The micromachine is manufactured by the method.
Abstract:
L'invention concerne un transistor MOS à grille déformable formé dans un substrat semiconducteur, comprenant des zones de source et de drain séparées par une zone de canal s'étendant dans une première direction de la source au drain et dans une deuxième direction perpendiculaire à la première, une poutre conductrice de grille placée au moins au-dessus de la zone de canal s'étendant dans la deuxième direction entre des points d'appui placés sur le substrat de chaque côté de la zone de canal, et tel que la surface de la zone de canal est creuse et a une forme semblable à celle de la poutre de grille lorsque celle-ci est en déflexion maximale vers la zone de canal.
Abstract:
A microelectromechanical structure having a ceramic substrate formed from low temperature co-fired ceramic sheets. A low loss photodefinable dielectric planarizing layer is formed over one surface of the ceramic substrate. This layer can be a sacrificial layer or a subsequent sacrificial layer added. A photodefined conductor is printed over the low loss dielectric planarizing layer and formed with the sacrificial layer into a structural circuit component. A switch is formed with a biasing actuator and deflectable member formed over the biasing actuator and moveable into open and closed circuit positions.
Abstract:
The current invention provides for encapsulated release structures, intermediates thereof and methods for their fabrication. The multi-layer structure has a capping layer (211) that preferably comprises silicon oxide and/or silicon nitride and which is formed over an etch resistant substrate (203). A patterned device layer (206), preferably comprising silicon nitride, is embedded in a sacrificial material (205, 209), preferably comprising polysilicon, and is disposed between the etch resistant substrate (203) and the capping layer (211). Access trenches or holes (219) are formed into the capping layer (211) and the sacrificial material (205, 209) is selectively etched through the access trenches (219) such that portions of the device layer (206) are released from the sacrificial material (205, 209). The etchant preferably comprises a noble gas fluoride NgF2x (wherein Ng = Xe, Kr or Ar: and where x = 1, 2 or 3). After etching that sacrificial material (205, 209), the access trenches (219) are sealed to encapsulate (241) released portions the device layer (206) between the etch resistant substrate (203) and the capping layer (211). The current invention is particularly useful for fabricating MEMs devices, multiple cavity devices and devices with multiple release features.
Abstract:
La présente invention concerne un dispositif à capacité variable intégrée comprenant au moins une membrane (12) formant au moins une armature mobile et présentant au moins une face principale en regard d'au moins une armature fixe. Conformément à l'invention, la membrane présente au moins une nervure (32) de rigidité se dressant dans une direction perpendiculaire à ladite face principale. Application à la réalisation de filtres résonnants.