Abstract in simplified Chinese:本发明揭示一种微米尺寸、单级之水平及垂直热致动器,其能够可重复及快速地将一微米尺寸之光学设备移离一基板之表面。该水平及垂直热致动器建构在一基板之表面上。至少一热支臂具有扣牢至该表面之第一端点及位于该表面上方之一自由端。一冷支臂具有扣牢至该表面之第一端点及一自由端。该冷支臂系相对该表面位于该热支臂上方及由该热支臂横侧偏离。该冷支臂被设计成适于接近其第一端点提供受到控制之弯曲作用。一构件以机械及电的方式耦合该热及冷支臂之自由端,使得当电流施加至该至少一热支臂时,该致动器呈现水平及垂直位移。
Abstract in simplified Chinese:在此提出一种微型电气机械(MEMS)设备,其包括一微电子基体及一热促动微型致动器以及位在该基体上且由单一结晶化材料形成为一单元化结构之相关组件,其中此等相关组件由该微型致动器热促动之后引动。举例来说,该微型电气机械设备可为一阀。因此,该阀可包括至少一阀片可控制地由该微型致动器之选择性促动与在该微电子基体内之至少一阀门口接合。尽管该微型电气机械设备得包括各式微型致动器,该微型致动器有利地包括配置在该基体上之一对相隔支撑件以及在该对支撑件间延伸之至少一拱梁。借由加热该微型致动器之至少一拱梁,该等拱梁会更为弯拱使该微型致动器在一关闭位置(其中该阀片与该阀门口密封地接合)与一开放位置(其中该阀片至少局部脱离该阀门口且未密封)间移动。该微型致动器更可在该等拱梁之末稍部分包括金属化轨线(traces)以将该等拱梁之热促动区域限制在其中间部分。该阀方可包括闩锁用来将该阀片维持于一期望位置而不用持续对该微型致动器输入能量。在此亦提出一种制造具有单元化结构单一结晶化组件之微型电气机械阀约有利方法。
Abstract in simplified Chinese:本发明系揭露一种超低功率热致动振荡器及其驱动电路,超低功率热致动振荡器包含质量块、热致动组件及复数个驱动件。质量块为对称配置且由弹簧结构悬空连接于基板上。热致动组件为线结构以有效减低运动阻抗和降低直流功率,其中,热致动组件与质量块或弹簧结构相连接。复数个驱动件则分别设置在热致动组件两侧以提供驱动电流。当驱动电流流经热致动组件时,使热致动组件产生变形,以驱动质量块产生振荡。
Abstract in simplified Chinese:一种具有可控制弯度之微米尺寸、单级、直立式热致动器其系能够重复并快速地将微米尺寸之光学组件移离基板之表面。直立式热致动器系建构在基板之一表面上。至少一热臂件之第一端部系固定至表面上以及一自由端部系位在表面上。冷臂件具有固定至表面上之第一端部及一自由端部。冷臂件相对于表面系位在热臂件上方。冷臂件系设计用以提供接近其第一端部处之可控制的弯度。一构件以机械与电气方式与热及冷臂件之自由端部连接,以致致动器大致上在弯曲部分处弯曲因此当至少施以电流至热臂件时该构件自基板移离。
Abstract in simplified Chinese:本发明揭示一种微米尺寸设计、单级之垂直热致动器,其能够可重复及快速地将微米尺寸设计之光学设备移离一基板之表面。在一基板之表面上制成该垂直热致动器。至少一热支臂具有扣牢至该表面之第一端点及位于该表面上方之一自由端。一冷支臂具有扣牢至该表面之第一端点及一自由端。该冷支臂系相对该表面位于该热支臂上方。一构件机械及电耦合该热及冷支臂之自由端,以致当电流施加至该至少一热支臂时,该构件移离该基板。该热支臂可视需要包含一接地翼片,以使该冷支臂之热膨胀减至最低。
Abstract:
PURPOSE: A micro-stage having a piezo resistance displacement sensor and a chevron beam structure is provided to amplify displacement of a column driver having a large shift through the chevron beam structure extended from four sides of a platform to vertical and horizontal directions. CONSTITUTION: A micro-stage having a piezo resistance displacement sensor and a chevron beam structure includes a platform(100), an extension beam(200), a chevron beam(300), a piezo resistance displacement sensor, and a column driver(400). The platform has a square shape, and a sample is placed in the center of the platform. The extension beam is extended from one side of the platform. The extension beam includes an electrode for preventing the extension beam from being bent to a specific axis. The chevron beam has a 'V' shape, and the center thereof is connected to the extension beam. The chevron beam draws the extension beam to drive the platform when the piezo resistance displacement sensor is driven. The piezo resistance displacement sensor is driven to a particular direction by generating Joule heat when a voltage is applied thereto. The piezo resistance displacement sensor comprises two integrated column drivers.
Abstract:
PURPOSE: A thermally actuated wavelength variable light source is provided to have variable range bigger than an electrostatic actuation mode by driving a thermal actuator using less power. CONSTITUTION: A lower reflector(20) locates on top of a substrate(10). An active medium(30) is located on top of the lower reflector. An upper side fixing mirror(40) is located on top of the active medium. A first electrode(34) is located on the lower part of the active medium in order to apply the current to the active medium. A second electrode(35) is located on top of the active medium in order to apply the current to the active medium. A heat driver(50) is installed on the upper part of the lower reflector in order to be highly located than the second electrode, and both side end point thereof is fixed to the lower reflector. A third and fourth electrodes are located on top of the thermal actuator in order to apply the current to the thermal actuator.
Abstract:
A thermal expansion micro actuator, a micro mirror formed directly on the same, a micro mirror actuating apparatus using the thermal expansion micro actuator, and a light switch using the same are provided to secure displacement larger than that of the existing thermal expansion micro actuator, satisfying two driving limit elements including maximum allowed temperature and yield stress. A thermal expansion micro actuator(100) is composed of a high temperature unit(101) of which temperature is increased up to high level due to high resistance by applying electricity and a low temperature unit(103) connected to the high temperature unit through a connecting unit(102), wherein the temperature of the low temperature unit is increased below the temperature of the high temperature unit due to resistance smaller than that of the high temperature unit. The thermal expansion micro actuator is bent from the high temperature unit to the low temperature unit when electricity is applied. An insulating layer(108) and a metal layer(109) are laminated in order on the outer surface of the high temperature unit at the opposite side of the low temperature unit.
Abstract:
본 발명은 기포의 생성과 소멸에 의하여 다이어프램을 작동시켜 정량의 유체를 공급하는 버블형 마이크로펌프용 마이크로히터를 개시한다. 본 발명의 마이크로펌프는 펌핑챔버의 유체와 다이어프램에 의하여 격리되어 있으며, 마이크로히터는 버블링챔버의 작동유체를 가열 및 냉각하여 기포의 생성과 소멸을 발생한다. 또한, 마이크로히터는 버블링챔버의 작동유체와 접촉하며 서로 평행하도록 이격되어 있는 직선형의 제1 및 제2 메인전극과, 제1 및 제2 메인전극 각각으로부터 서로 대응하도록 연장되어 있으며 서로 이격되어 있는 직선형의 제1 및 제2 브렌치전극과, 제1 및 제2 브렌치전극의 말단을 연결하고 작동유체를 가열하여 기포를 단 하나로 생성하는 직선형의 버블링전극으로 구성된다. 본 발명에 의하면, 짧고 가는 버블링전극에 의하여 짧은 거리에서 큰 전위차를 발생하여 단일의 기포를 일정한 크기로 정밀하고 정확하게 제어하여 생성함으로써, 정량의 유체를 공급할 수 있으며, 전극의 전기분해를 최소화시켜 신뢰성을 크게 향상킬 수 있는 효과가 있다.
Abstract:
PURPOSE: A closed-loop type micro generator is provided to stably supply power by adopting a thermodynamic cycle concept to a micro system. CONSTITUTION: A magnet(10) is used so as to convert a thermal energy into a mechanical movement energy and a coil(14) wound around the magnet(10) is used so as to convert the mechanical movement energy into an electric energy. A capillary pump(24) is provided so as to continuously supply operating fluid(12) into a micro valve(24) or a micro channel(30). A micro channel(30) is provided at an upper portion of a heating section(20). The heating section(20) is opened/closed by means of a thin film(16). The magnet(10) and the coil(14) are provided between the heating section(20) and the micro channel(30). A cooling section(22) is formed on the heating section(20). An insulation section(20) is formed between the heating section(20) and the micro channel(30) except for the center of the micro channel(30).